Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strongest proof yet found for prion hypothesis

22.04.2005


Prions made in vitro cause brain disease in hamsters



UTMB scientists offer strongest evidence yet that infectious misformed proteins cause mad cow disease and other mysterious brain disorders. Researchers at the University of Texas Medical Branch at Galveston (UTMB) have produced the strongest proof yet that the mysterious and devastating brain diseases known as "transmissible spongiform encephalopathies" (TSEs) are transmitted by an infectious agent composed only of a malformed protein, and not a virus. TSEs, which can afflict both human beings and animals, include mad cow disease, new-variant Creutzfeldt-Jakob Syndrome, scrapie, kuru and chronic wasting disease.

This controversial "prion hypothesis" was proposed by Stanley Prusiner in 1982, and led to Prusiner receiving the Nobel Prize in Medicine in 1997. Until now, however, scientists have been unable to confirm its validity by causing a TSE in normal lab animals by infecting them with malformed proteins (dubbed "prions" by Prusiner) created entirely in a test tube. Such an approach eliminates the possibility that some other agent might be causing the disease.


In a paper scheduled to appear in the journal Cell on April 21, the UTMB researchers describe the use of a method they developed called "protein misfolding cyclic amplification" (PMCA) to vastly accelerate the activity of a small number of prions taken from infected hamsters and placed in test tubes containing healthy brain proteins. When the healthy proteins had been largely transformed into prions, the samples were diluted over and over again and the process repeated, until the only remaining prions were those that had been generated in the test tubes. These were then injected into the brains of healthy hamsters, which began showing TSE symptoms within four months and, on average, died less than six months after inoculation.

"For many years, people have tried to make these infectious prions in test tubes, because what is needed to prove the prion hypothesis completely is to be able to produce this process in vitro in the absence of living cells and thus rule out the presence of a virus," said Claudio Soto, professor of neurology at UTMB and senior author of the paper. "The evidence in favor of the prion hypothesis was strong, but the final proof was still missing. Now we have supplied this proof."

Soto emphasized that a tremendous increase in efficiency of the PMCA technology played a crucial role in the work of his team, which included study co-authors Joaquín Castilla, Paula Saá and Claudio Hetz. By mimicking the natural mechanism of prion formation but doing so at a much higher rate, PMCA made it possible to produce the large quantities of prion protein necessary for the success of the experiments and opened the door to further TSE studies. According to Soto, it should also soon facilitate creating a much-needed blood test for prions, which would greatly improve current surveillance techniques for mad cow disease and its human form, new-variant Creutzfeldt-Jakob Syndrome.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>