Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strongest proof yet found for prion hypothesis


Prions made in vitro cause brain disease in hamsters

UTMB scientists offer strongest evidence yet that infectious misformed proteins cause mad cow disease and other mysterious brain disorders. Researchers at the University of Texas Medical Branch at Galveston (UTMB) have produced the strongest proof yet that the mysterious and devastating brain diseases known as "transmissible spongiform encephalopathies" (TSEs) are transmitted by an infectious agent composed only of a malformed protein, and not a virus. TSEs, which can afflict both human beings and animals, include mad cow disease, new-variant Creutzfeldt-Jakob Syndrome, scrapie, kuru and chronic wasting disease.

This controversial "prion hypothesis" was proposed by Stanley Prusiner in 1982, and led to Prusiner receiving the Nobel Prize in Medicine in 1997. Until now, however, scientists have been unable to confirm its validity by causing a TSE in normal lab animals by infecting them with malformed proteins (dubbed "prions" by Prusiner) created entirely in a test tube. Such an approach eliminates the possibility that some other agent might be causing the disease.

In a paper scheduled to appear in the journal Cell on April 21, the UTMB researchers describe the use of a method they developed called "protein misfolding cyclic amplification" (PMCA) to vastly accelerate the activity of a small number of prions taken from infected hamsters and placed in test tubes containing healthy brain proteins. When the healthy proteins had been largely transformed into prions, the samples were diluted over and over again and the process repeated, until the only remaining prions were those that had been generated in the test tubes. These were then injected into the brains of healthy hamsters, which began showing TSE symptoms within four months and, on average, died less than six months after inoculation.

"For many years, people have tried to make these infectious prions in test tubes, because what is needed to prove the prion hypothesis completely is to be able to produce this process in vitro in the absence of living cells and thus rule out the presence of a virus," said Claudio Soto, professor of neurology at UTMB and senior author of the paper. "The evidence in favor of the prion hypothesis was strong, but the final proof was still missing. Now we have supplied this proof."

Soto emphasized that a tremendous increase in efficiency of the PMCA technology played a crucial role in the work of his team, which included study co-authors Joaquín Castilla, Paula Saá and Claudio Hetz. By mimicking the natural mechanism of prion formation but doing so at a much higher rate, PMCA made it possible to produce the large quantities of prion protein necessary for the success of the experiments and opened the door to further TSE studies. According to Soto, it should also soon facilitate creating a much-needed blood test for prions, which would greatly improve current surveillance techniques for mad cow disease and its human form, new-variant Creutzfeldt-Jakob Syndrome.

Jim Kelly | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>