Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little stress gives beneficial oomph! to immune system

19.04.2005


New research in mice provides more evidence that a brief bout of stress can give the immune system a beneficial boost – under certain conditions



Laboratory results showed that acute stress – stress that lasts for minutes to hours – temporarily mobilized all major types of immune cells, or leukocytes to potential battle stations in the body. In certain situations, this stress-induced boost in the number of immune cells may be advantageous, as leukocytes fight infections and other diseases.

Stressed mice had much higher numbers of leukocytes arriving at critical defense organs, such as the skin, than did non-stressed mice.


"Acute stress could help increase immune protection," said Firdaus Dhabhar, the study’s lead author and an associate professor of oral biology and molecular virology, immunology and medical genetics at Ohio State University. "An increase in leukocyte activity and availability may enhance the immune system’s ability to protect the body during surgery, vaccination or during an infection".

But there is also a downside – ushering an increased number of immune cells to sites of potential immune reaction could worsen pre-existing inflammatory illnesses such as cardiovascular disease or gingivitis, and autoimmune disorders such as arthritis, multiple sclerosis or psoriasis. In autoimmune diseases, the immune system attacks the body.

"Understanding mechanisms that mobilize leukocytes to potential battle stations during stress could help us figure out ways to boost the immune response when it could be most helpful to do so, such as during surgery, vaccination or infection,” Dhabhar said. “And it could also help us tone down the immune response during inflammatory diseases.”

Dhabhar and Kavitha Viswanathan, a graduate research associate in oral biology at Ohio State, reported their findings online in the Proceedings of the National Academy of Sciences.

The current study is one of a number of studies conducted by researchers at Ohio State that look at the effects of stress on the immune system. While Dhabhar and his team have focused on the effects of acute stressors, other researchers have found that chronic stress may substantively weaken the immune system.

Leukocytes are always present in the body, but most remain dormant until an immune response is activated by wounding or infection or until the brain identifies a stressful situation. When that happens, the brain releases hormones that set troops of these immune cells into motion. The cells travel to potential battle stations – primarily the skin along with the lymph nodes that drain the skin.

“Most immune challenges or wounds involve on the skin or other epithelial linings of the body,” Dhabhar said. “If nothing happens immunologically following stress – the skin isn’t cut or wounded in some other way – activated leukocytes usually return to their resting position in a few hours.”

Some of the mice in the study were restrained in clear plastic ventilated tubes for two-and-a-half hours. These mice – the stressed group – could not turn around in the tube, but they could move forward and backward. This restraint created a brief spell of psychological stress, similar to the kind of stress a person anticipating or undergoing a dental or surgical procedure may feel. The other group of mice – the non-stressed group – remained in their home cages.

Once the stressed mice were removed from the tubes, the researchers implanted tiny sponges underneath the skin on the backs of all of the animals, including the mice in the non-stressed group. These disc-shaped sponges were about the size of a grain of rice.

Sponges were removed from some of the mice six hours after implantation and from the rest of the mice one, two or three days later. The researchers compared the numbers of leukocytes in each sponge once the sponges were removed.

“Just one session of acute stress caused a significant increase in the numbers of leukocytes to collect in the sponge,” Dhabhar said. Indeed, the amount of certain types of immune cells had increased by 200 to 300 percent in the stressed mice.

By that third day, the number of leukocytes that had collected in the sponges of the stressed mice had declined and was similar to the number of cells that had collected in the sponges of the non-stressed animals.

Prior to their implantation, the sponges were soaked in either saline or one of two proteins that the body produces during an immune response. These proteins, called lymphotactin (LTN) and TNF-alpha, attract different types of leukocytes.

After sponges were removed from the mice, the researchers also analyzed the types and quantity of specific immune cells attracted to each of the proteins.

“While all major leukocytes are mobilized in great numbers at the first hints of acute stress, the immune proteins that are generated at the battle site will determine which types of immune cells are further recruited in greater numbers,” Dhabhar said.

“Different types of immune challenges may produce different cocktails of immune proteins,” he continued. “Knowing how the body’s stress hormones work with these kinds of proteins to recruit immune cells could help us develop therapeutic interventions to regulate how a person’s immune system responds to different challenges.”

Grants from the National Institutes of Health and the Dana Foundation supported this work.

Firdaus Dhabhar | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>