Project could lead to anthrax drugs

A project launched at the University of Essex could lead to the development of drugs capable of reversing the effects of the anthrax bacteria.


Dr Metodi Metodiev has been awarded almost £62,500 by the National Institute of Health, USA, to investigate the deadly effects of the anthrax bacteria on human cells.

The aim is to create a screening platform by which scientists can select ’inhibitors’ capable of stopping the progress of anthrax.

Dr Metodiev said: ’Anthrax kills human cells by invading them and binding to proteins vital for specific signal transduction pathways, the signalling process by which the cell communicates with the environment and with other cells. By interrupting that signalling pathway, anthrax kills the cell and eventually the patient.’

Yeast will be used to create ’yeast cells’ with the same signalling abilities of a human cell. These will be grown in a variety of different conditions replicating the effects of anthrax, and the signalling abilities will be monitored in the presence of different test compounds.

Dr Metodiev explained the advantages of using yeast: ’It allows us to screen potential therapeutics by genetic selection. As well, ’yeast cells’ can be grown quickly which is hugely beneficial because, if anthrax were used as a bio-weapon, it is likely to have been engineered and could therefore be resistant to existing drugs. By using yeast, we may be able to subject our imitation human cells to a number of different scenarios and identify and counteract the effect of the anthrax bacteria within days.’

The project is scheduled to last for two years but Dr Metodiev hopes to extend the project by a further five years depending on the outcomes of this stage.

Media Contact

Kate Clayton alfa

More Information:

http://www.essex.ac.uk/wyvern

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors