Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment for hereditary breast cancer

14.04.2005


Researchers at Stockholm University have, together with colleagues in England, discovered a new way of treating and preventing hereditary breast cancer. The article, published in Nature, describes how the use of a chemical inhibitor can specifically kill tumour cells, which have a defect in the gene causing hereditary breast cancer. This new treatment targets only the tumour cells and is not likely to affect other healthy cells in the body. The discovery could also lead to a prophylactic treatment for hereditary breast cancer.



In most women, the BRCA1 and BRCA2 genes prevent breast tumours from forming, but some women have inherited mutations in these genes, giving them about an eighty per cent risk of developing breast cancer.

Normal cells replicate by dividing DNA into two strands and copying each strand. Before replication, damage in the DNA is usually repaired using a protein called PARP. If PARP is absent or inhibited then the cells use a second mechanism called recombination to fix the damage and continue to replicate. Cells with mutated BRCA genes can’t undergo recombination and therefore rely completely on PARP to fix the damage.


The new treatment uses a chemical that prevents PARP from repairing the DNA, making recombination essential. The breast cancer tumour cannot perform recombination and is therefore unable to replicate and create new cells. The tumour is then unable to grow and eventually dies.

The beauty of this system is that only the tumour cells lack BRCA genes and thus only they completely rely on PARP. The other cells in the body are likely to be unaffected by the treatment and continue to use recombination to repair any mistakes that occur."

-- Since normal cells don’t need the PARP backup system to survive we could use PARP inhibitors as a prophylactic treatment to kill BRCA deficient cells before they grow out to tumours, says Dr Thomas Helleday, associate professor at Stockholm University who runs the research group. Both the treatment and the possible use as a preventive treatment are new concepts in cancer therapy. They could lead to revolutionary new treatments for women with hereditary breast cancer within the next five years or so.

Agneta Paulsson | EurekAlert!
Further information:
http://www.su.se

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>