Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty folding of protein in the environment may cause disease

13.04.2005


Serious diseases have been shown to be related to unhealthy protein chains that occur when proteins fold ’incorrectly’. In an article in the scientific journal Proceedings of the National Academy of Science, PNAS, a research team from Uppsala University have shown that similar protein chains in our environment may hasten the process.



Under certain conditions, incorrectly folded proteins can transmit diseases from one individual to another. This is the mechanism in diseases caused by prions, such as mad cow disease or Creutzfeldt-Jakob disease. In principle prions are normal proteins, but they have an abnormal three-dimensional structure. Prions bring about infections by prompting other normal protein molecules to assume the abnormal form. These lumps then aggregate into a chain, which starts a chain reaction that ultimately causes a fatal disease.

There are other human proteins that can also change their three-dimensional structure in a similar manner and give rise to unhealthy protein chains, so-called amyloid. Amyloid contributes to the occurrence of many different diseases, such as Alzheimer‚s disease and type-2 diabetes, but it is also a serious complication of long-term inflammatory conditions such as rheumatoid arthritis.


This disease, which is called secondary or AA-amyloidosis, also occurs in mice and can be transmitted from one animal to another via a prion-like mechanism. Here, too, the infected particle is not a micro-organism but rather an incorrectly folded and chain-shaped protein, in this case AA-protein in the form of amyloid. It is still not known exactly how the incorrectly folded protein gets other normally folded protein molecules to assume the abnormal form.

Amyloid is always morbid in humans and mice, but amyloid-like chains also occur normally in our environment. Certain bacteria and fungi have amyloid-like chains on their surfaces. Silk and spider webs are other amyloid-like examples. The research team has found that such chain-shaped proteins hasten the development of AA-amyloidosis and can ’transmit’ the disease in animals under certain conditions. In other words, it seems as if the chain-like protein forms in our environment can inter-react with some of our own proteins and cause disease. Since amyloid is involved in many other diseases, the findings may indicate that environmental factors of a previously unknown type can affect and hasten the occurrence of diseases in which amyloid plays a central role.

The research was carried out by a team consisting of Dr. Katarzyna Lundmark, Karolinska Institute, Associate Professor Arne Olsén, Göteborg University, Associate Professor Gunilla T Westermark, Linköping University, and Professor Per Westermark, Uppsala University.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>