Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faulty folding of protein in the environment may cause disease

13.04.2005


Serious diseases have been shown to be related to unhealthy protein chains that occur when proteins fold ’incorrectly’. In an article in the scientific journal Proceedings of the National Academy of Science, PNAS, a research team from Uppsala University have shown that similar protein chains in our environment may hasten the process.



Under certain conditions, incorrectly folded proteins can transmit diseases from one individual to another. This is the mechanism in diseases caused by prions, such as mad cow disease or Creutzfeldt-Jakob disease. In principle prions are normal proteins, but they have an abnormal three-dimensional structure. Prions bring about infections by prompting other normal protein molecules to assume the abnormal form. These lumps then aggregate into a chain, which starts a chain reaction that ultimately causes a fatal disease.

There are other human proteins that can also change their three-dimensional structure in a similar manner and give rise to unhealthy protein chains, so-called amyloid. Amyloid contributes to the occurrence of many different diseases, such as Alzheimer‚s disease and type-2 diabetes, but it is also a serious complication of long-term inflammatory conditions such as rheumatoid arthritis.


This disease, which is called secondary or AA-amyloidosis, also occurs in mice and can be transmitted from one animal to another via a prion-like mechanism. Here, too, the infected particle is not a micro-organism but rather an incorrectly folded and chain-shaped protein, in this case AA-protein in the form of amyloid. It is still not known exactly how the incorrectly folded protein gets other normally folded protein molecules to assume the abnormal form.

Amyloid is always morbid in humans and mice, but amyloid-like chains also occur normally in our environment. Certain bacteria and fungi have amyloid-like chains on their surfaces. Silk and spider webs are other amyloid-like examples. The research team has found that such chain-shaped proteins hasten the development of AA-amyloidosis and can ’transmit’ the disease in animals under certain conditions. In other words, it seems as if the chain-like protein forms in our environment can inter-react with some of our own proteins and cause disease. Since amyloid is involved in many other diseases, the findings may indicate that environmental factors of a previously unknown type can affect and hasten the occurrence of diseases in which amyloid plays a central role.

The research was carried out by a team consisting of Dr. Katarzyna Lundmark, Karolinska Institute, Associate Professor Arne Olsén, Göteborg University, Associate Professor Gunilla T Westermark, Linköping University, and Professor Per Westermark, Uppsala University.

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>