Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanobacteria in clouds could spread disease, scientists claim

06.04.2005


’Micro-organisms could also prompt rainfall’



Micro-organisms in clouds could play a crucial role in the spread of disease and in the formation of rain drops, scientists have claimed. The radical theories about nanobacteria – micro-organisms considerably smaller than ordinary bacteria - in clouds are published in two recent articles in the Journal of Proteome Research by Dr Andrei P. Sommer of the University of Ulm, Germany, and Professor Chandra Wickramasinghe of Cardiff University, UK.

They say nanobacteria are now accepted as being widely prevalent in the terrestrial environment and that their evidence is compelling for the existence of these nano-organisms, even in the stratosphere. In humans, nanobacteria have now been identified on four continents, they add.


Dr Sommer and Professor Wickramasinghe further suggest that nanobacteria’s involvement in several serious diseases such as the formation kidney stones, heart disease, and HIV is also slowly being recognised by the scientific community. "Experiments have shown that nanobacteria are excreted from the body in urine and their dispersal from the ground into the atmosphere and stratosphere appears to be inevitable," said Dr Sommer.

The scientists argue that their occurrence in clouds could play a crucial role in the global dispersal of infective agents, and might also play a prominent role in the nucleation of cloud drops.

"This happens because nanobacteria, lifted from the ground by winds, could transit between the high humidity region of the clouds and the relatively dry inter-cloud regions, leading to oscillations between a dormant state and one of activation," explained Professor Wickramasinghe. "Remnants of a sticky protein (slime) coating nanobacteria makes them act as extremely efficient cloud condensation nuclei, with a tendency to aggregate to clusters upon contact."

Their work corroborates the findings of Ruprecht Jaenicke, of the Institute for Atmospheric Physics at Mainz University, Germany, on bioaerosols (airborne contaminants) and proteins in the atmosphere reported in New Scientist (31 March) and Science (1 April). The contribution of nanobacteria to pathogenic bioaerosols, in the view of the authors, must overwhelm all other types of biological particles in the atmosphere.

Prof. Chandra Wickramasinghe | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>