Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Angiogenesis factor may help tumors prepare the way for spread to lymph nodes

05.04.2005


Tumor cells use VEGF-A to stimulate lymphatic vessel growth beyond primary site



Production of the protein VEGF-A, already known to stimulate the growth of blood vessels associated with tumors, also contributes in unexpected ways to the spread of cancer. In the April Journal of Experimental Medicine, researchers from Massachusetts General Hospital (MGH) and the Swiss Federal Institute of Technology describe finding that VEGF-A promotes the development of lymphatic vessels that can carry cancer cells to lymph nodes and can actually prepare the way for tumor metastasis by inducing new lymphatic vessels to grow within the nodes even before a secondary tumor has developed.

"This observation is our most surprising and exciting finding," says Michael Detmar, MD, of the MGH Cutaneous Biology Research Center, the study’s senior author. "It’s a new twist to the ’seed and soil’ hypothesis, which postulates that distinct cancer types preferentially metastasize to organs that are optimally suited for them. Our results indicate that the ’seeds’ can actively modify the ’soil’ and prepare it for later metastatic arrival."


While it is now accepted that tumors can stimulate development of their own blood supply, a process called angiogenesis, similar growth of new lymphatic vessels was not suspected until 2001. At that time Detmar and his colleagues showed that human breast tumors implanted into mice induce the growth of lymphatic vessels and that lymphangiogenesis plays a key role in tumors’ spread to lymph nodes. It had previously been believed that tumors had no functioning lymphatic vessels. The 2001 study focused on VEGF-C, the first factor identified to promote lymphatic vessel growth, and subsequent research has identified another lymphatic factor called VEGF-D, which also is active in the spread of cancer.

While VEGF-A had been believed to promote the development of new blood vessels only, recent research at the MGH and elsewhere found that it also induced proliferation of lymphatic tissue and vessels in laboratory and animal models. As a result, the MGH team decided to investigate its possible role in tumor-associated lymphangiogenesis. Research fellow Satoshi Hirakawa, MD, PhD, the study’s first author developed a strain of transgenic mice in which skin cells express a green fluorescent protein and also produce elevated levels of VEGF-A. The researchers then induced the development of benign and malignant skin tumors in both the transgenic mice and normal mice in order to identify differences that could be attributed to elevated levels of VEGF-A.

The transgenic mice were found to develop both benign papillomas and malignant squamous cell carcinomas more rapidly and more extensively than did mice with normal VEGF-A expression. Both strains of mice had increased levels of angiogenesis associated with benign and malignant tumors, but the transgenic mice also had more and larger lymphatic vessels than did the normal mice. In addition, the new lymphatic vessels were shown to carry the receptor molecule known to interact with VEGF-A.

Examination of sentinel lymph nodes – those most adjacent to the tumors – showed increased spread of malignant cells to the nodes of transgenic mice. Those cells expressed the green fluorescent protein, confirming they originated in the skin tumors. The transgenic mice were also twice as likely to develop metastases in more distant lymph nodes. Detailed analysis of the nodes themselves found greater numbers of both blood vessels and lymphatic vessels in metastatic nodes of the transgenic mice, compared with cancer-containing nodes in normal mice. In addition, the transgenic mice also had increased lymphatic development in nodes that were cancer-free, suggesting that VEGF-A-induced lymphangiogenesis takes place in lymph nodes even before a metastatic tumor develops.

Another unexpected finding was that the metastatic lymph nodes of transgenic mice, which continued to overexpress VEGF-A, actively promote further lymphatic development, a newly discovered phenomenon the researchers called lymph node lymphangiogenesis. Detmar explains that the transportation of tumor cells by the lymphatic system previously had been considered a passive process. "Our findings reveal that tumor cells, even after they have metastasized to the lymph nodes, can very actively induce the growth of the very channels that will enable transport to other nodes and the organs."

Detmar notes that this newly identified process could be a promising target for therapies designed to prevent the further spread of metastatic cancer, which has been a major challenge in cancer treatment. He is an associate professor of Dermatology at Harvard Medical School and is also a professor of Pharmacogenomics at the Swiss Federal Institute of Technology.

Additional co-authors of the study are Shohta Kodama, MD, PhD, Rainer Kunstfeld, MD, and Kentaro Kajiya, MSc, of the MGH and Lawrence Brown, MD, of Beth Israel Deaconess Medical Center. The research was supported by grants from the National Institutes of Health, the American Cancer Society Research Project and the MGH Cutaneous Biology Research Center.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>