Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Muscle-Targeted Gene Therapy Reverses Rare Muscular Dystrophy in Mice

30.03.2005


Gene therapy methods that specifically target muscle may reverse the symptoms of a rare form of muscular dystrophy, according to new research in mice conducted by medical geneticists at Duke University Medical Center. Infants born with the inherited muscular disorder called Pompe disease usually die before they reach the age of two. The researchers also said their approach of targeting corrective genes to muscles may have application in treating other muscular dystrophies.



Patients with Pompe disease have a defect in a key enzyme that converts glycogen, a stored form of sugar, into glucose, the body’s primary energy source. As a result, glycogen builds up in muscles throughout the body, including the heart, causing muscles to degenerate.

Using genetically altered mice in which the gene for the enzyme had been rendered nonfunctional, the researchers demonstrated they could introduce the functioning gene and correct glycogen buildup in heart and skeletal muscle. The findings suggest that such an approach should be considered as a potential gene therapy strategy for Pompe disease patients, the researchers report in a forthcoming issue of Molecular Therapy (now available online).


"Gene therapy in muscular dystrophies presents a unique challenge, because replacement of deficient, therapeutic proteins invokes an immune response that limits the efficacy of the treatment," said Duke medical geneticist Dwight Koeberl, M.D., senior author of the study. "By restricting the expression of introduced genes to muscle, the immune response can be prevented or attenuated."

The muscle-targeted gene therapy might therefore apply to other forms of muscular dystrophy, they added. Muscular dystrophies include many genetic diseases, all of which are characterized by progressive weakness and degeneration of the skeletal muscles which control movement.

The Muscular Dystrophy Association and Genzyme Corporation supported the research.

Several forms of Pompe disease affect more than 5,000 people in the U.S. If symptoms appear during infancy, the disease is usually fatal. Those for whom symptoms first appear late in childhood live longer, but life expectancy remains greatly decreased. Although Pompe disease is a relatively rare disease, it is but one of a group of related "lysosomal storage diseases," which in total occur in about one in 5,000 births.

The current study is part of a large, collaborative effort at Duke University Medical Center to find an effective treatment for Pompe disease. The Duke team earlier developed enzyme replacement therapy, in which a normal version of the faulty enzyme in those with the disease is infused weekly. In clinical trials of the replacement therapy, the infusions have already prolonged the lives of many babies with Pompe disease, Koeberl said.

"A number of babies have been receiving enzyme replacement therapy for several years," said Koeberl. "They are walking, living longer, and meeting developmental milestones."

Despite the early success of enzyme replacement therapy for some children with Pompe disease, a need for gene therapy remains, he added. In gene therapy, a therapeutic gene is delivered to patient cells, often using a modified virus.

Gene therapy might offer an alternative treatment for those children who fail to respond to enzyme replacement therapy, he said. Even for those that respond well to enzyme infusions, treatment requires weekly injection of a large amount of the enzyme.

"Gene therapy has the potential to reverse the course of the disease with a single treatment," Koeberl said.

The researchers delivered the glycogen-degrading enzyme with an adeno-associated virus (AAV) vector. AAV is not associated with any known human disease. The DNA coding for the enzyme was linked to a specialized DNA "promoter" region that restricted its activity to muscle. The investigators either injected the viral particles into the muscle or injected it intravenously in Pompe disease mice.

Six weeks after muscular injection with the virus containing the muscle-restricted gene, mice exhibited high levels of the enzyme and reduced glycogen content in the injected muscle. The mice also had a reduced immune response to the new enzyme, compared to those in which gene expression was not limited to muscle, they found.

Moreover, intravenous administration of the muscle-targeted gene reduced the glycogen content of heart and skeletal muscle and corrected individual muscle fibers. The effect persisted for 24 weeks post-injection, the team reported.

A second gene therapy strategy, in which the enzyme involved in Pompe disease is inserted into the liver, is also under investigation at Duke, said Koeberl. In the January 2005 issue of Molecular Therapy, the researchers reported that the liver-targeted method also corrected symptoms of Pompe disease in mice.

"The muscle-targeted gene therapy method could circumvent the complications of neutralizing antibodies against introduced enzyme, which currently present obstacles to enzyme replacement therapy and liver-targeted gene therapy in Pompe disease," Koeberl said.

Clinical trials of either the muscle- or liver-targeted gene therapies will likely take several years to launch, Koeberl said.

Collaborators on the gene therapy studies include Baodong Sun, Haoyue Zhang, Luis Franco, Andrew Bird, Ayn Schneider, Sarah Young, Y.T. Chen, and Andy Amalfitano, all of Duke Medical Center, and Talmage Brown, of North Carolina State University College of Veterinary Medicine.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>