Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists win £800,000 to boost research into fighting viruses


A team of University of Glasgow scientists have received a grant of £800,000 from the Wellcome Trust to research a mechanism that blocks a critical step in the replication cycle of retroviruses. In the long term, the research could lead to the design of new therapeutic strategies or drugs against retroviruses, which cause diseases such as AIDS and certain leukemias.

Mammals have evolved several mechanisms to fight viral infections, and insight into how humans and animals successfully limit virus spread helps to develop effective anti-viral drugs and vaccines.

The scientists are set to further investigate a mechanism that may be able to stop so-called retroviruses in their tracks. Retroviruses, during their life cycle, spread by permanently inserting their genetic material into healthy cell’s DNA.

The scientists, led by Professor Massimo Palmarini from the University of Glasgow’s Faculty of Veterinary Medicine, are investigating how some endogenous retroviruses (’benign’ retrovirusese present in the genome of all mammals) protect hosts by interfering with the infection by related disease-causing retroviruses.

The new grant will boost the study of how an ’endogenous’ retroviruses (ERV) named enJS56A1 interferes with a pathogenic ’exogenous’ retrovirus (JSRV), the cause of major infectious diseases of sheep. enJS56A1 forms viral particles that ’stick’ together and cannot exit the cell and spread to other cells. JSRV instead forms particles normally able to exit the cell.

However, when JSRV and enJS56A1 are present in the same cell only defective ’sticky particles’ are formed, effectively blocking viral infection. Understanding the mechanisms of enJS56A1-induced block can lay the foundation to develop new drugs that stop production of viruses from infected cells.

The research is set to shed light on how retroviruses evolve and will help explain late steps in the retroviral life cycle. Understanding how enJS56A1 functions could provide a model for designing new anti-retroviral therapies that work on cells already infected by retroviruses. Many current anti-retroviral drugs function only immediately after the virus infects a new cell.

Professor Palamarini, from the University of Glasgow’s Veterinary Faculty, said: ’The grant is set to develop much needed research into viral infections. We need to understand more about how retroviruses work and this work could eventually lead to new treatments to fight retroviruses.’

’Like all viruses, retroviruses insert their genetic material into host cells and then force the host to make copies of the virus. Unlike other viruses, however, retroviruses permanently insert a copy of their genes into the genome of cells they invade. Every sheep on the planet has retroviruses that are present in the genome like every other gene. In fact, all animal species - humans included - have retroviruses that are genetically inherited.’

The University of Glasgow recently recruited Professor Massimo Palmarini, a world-leading expert in viral pathogenesis and lung cancer. Most recently of the University of Georgia, USA, Professor Palmarini now leads a team of molecular cancer specialists and virologists at Glasgow and is set to continue his groundbreaking work into a virus induced type of lung cancer, the disease which led to the demise of Dolly the sheep, the world’s first cloned mammal.

His expertise spans the fields of viral pathogenesis, infectious disease and cancer. The major focus of Professor Palmarini’s research is the study of a naturally occurring contagious lung cancer of sheep, ovine pulmonary adenocarcinoma (OPA) that cannot currently be controlled, and leads to significant economic loss in the UK and beyond. Research into the mechanisms underlying this form of lung cancer could provide strategies to understand the onset and progression of human lung cancer, the leading cause of deaths in cancer patients.

Jenny Murray | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>