Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC findings may help explain cause of most common movement disorder

02.03.2005


Scientists at the University of North Carolina at Chapel Hill may have identified the genetic basis underlying essential tremor disease, the most common human movement disorder.



The discovery comes from studies involving a strain of genetically altered mice that show the same types of tremor and similar lack of coordination as people affected by essential tremor. This animal model of the disease might prove useful for screening potential treatments, said Dr. A. Leslie Morrow, associate director of UNC’s Bowles Center for Alcohol Studies and professor of psychiatry and pharmacology in UNC’s School of Medicine. "We believe that these mice could explain one etiology, or origin, of essential tremor disease in humans because of the marked similarities between the mouse model and the human disease," said Morrow, who led the study team.

A report of the findings will appear in the March issue of the Journal of Clinical Investigation. An estimated 5 million Americans are affected by essential tremor, a neurological disease characterized by an uncontrollable shaking of the limbs, in particular the arms and head. Unlike resting tremor associated with Parkinson’s disease, symptoms of essential tremor are noticeable during movement, such as lifting a cup of coffee. The causes of essential tremor disease remain unknown, and current therapies are either partially effective or carry undesirable side effects.


The finding is serendipitous, Morrow said, because the study was initiated in an effort to learn more about alcoholism and the tremors that result from alcohol withdrawal. Her group had been examining a unique breed of laboratory mice that has been genetically engineered to lack a molecule called the gamma-aminobutyric acid-A (GABA-A) receptor alpha-1 subunit.

GABA-A receptors reside on the surface of brain cells where they help the brain to relay "stop" messages throughout the body. Two alpha-1 subunits combine with three other proteins to form the most common type of GABA-A receptor, but this subunit is absolutely required for these GABA-A receptors to exist in brain, Morrow said. The mice lacking alpha-1 subunits have about 50 percent fewer GABA-A receptors in the brain than normal mice. A defect in GABA-A receptor function could contribute to the loss of muscle control that characterizes essential tremor patients, Morrow said. "There is a reduction of the GABA-A receptor alpha-1 subunit in animal models of alcohol dependence, so we wanted to study the mice. As soon as we obtained them we noticed that they had a tremor."

The symptoms in GABA-A receptor alpha-1 deficient mice had the same properties as those in people who suffer from essential tremor, suggesting to the authors that the mice might respond to drugs used to treat human patients. "Very low doses of alcohol are effective at ameliorating tremor in human patients. Interestingly, we observed the same effect in these mice - they are exquisitely sensitive to alcohol," said Morrow.

Additional compounds that ease the symptoms of essential tremor in humans, such as the anticonvulsant primidone and the beta-blocker propranolol, also had partial alleviating effects in the mutant mice. "The work by the Morrow group clearly implicates the GABA system in human essential tremor," said Dr. Kirk Wilhelmsen, associate professor of genetics and neurology at UNC. "These mice provide a framework for further pharmacologic study of essential tremor and currently are the best available model for the condition."

Future studies will examine essential tremor patients for polymorphisms or variations in the DNA sequence that might adversely affect GABA-A receptors. "This is one example of how animal research can lead to progress in understanding and treating human disease," said Morrow.

In addition to Morrow, co-authors from the Bowles Center for Alcohol Studies include Dr. Jason E. Kralic, Dr. Hugh E. Criswell, Jessica Osterman, Todd K. O’Buckley, Mary-Beth E. Wilkie and Dr. George R. Breese. Other co-authors include Dr. Douglas B. Matthews from the University of Memphis’ department of psychology and Dr. Kristin Hamre from the University of Tennessee’s department of anatomy and neurobiology.

The GABA-A receptor alpha-1 deficient mice were engineered and generated by collaborator Dr. Gregg E. Homanics of the University of Pittsburgh, also a co-author in the study.

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>