Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Smart’ immune cells kill more cancer

02.03.2005


In efforts to educate the body to fight off cancer, researchers have found that some immune cells are "smarter" than others. Working with collections of human cells, Johns Hopkins Kimmel Cancer Center scientists tested kill-rates of two kinds of T-cells "primed" to home in on myeloma, a cancer of the bone marrow. Those that live in the bone marrow outperformed their counterparts circulating in the blood by more than 90 percent.



"It is very difficult to design cancer therapies that get the body’s immune system to recognize and kill cancer cells that the system has ignored for a long time," says Ivan Borrello, M.D., assistant professor of oncology and director of the research, which is published in the March 1 issue of Cancer Research. "Now, we have evidence that ’educating’ T-cells in the bone marrow may be the most effective way to get an anti-tumor response."

In nature, T-cells are responsible for identifying cells that are foreign to the body, including genetically altered cancer cells, and marking them for destruction. In the Hopkins study of both kinds of T-cells, those from the blood and bone marrow, scientists mixed them with magnetic beads coated with tumor antibodies, a sort of "artificial intelligence" that activated and expanded the T-cells’ cancer-killing mode.


The marrow T-cells identified not only mature myeloma cells but the primitive cells responsible for the disease. Activated bone marrow T-cells stopped the growth of 86 percent of myeloma stem cell colonies compared to 47 percent for activated t-cells taken from circulating blood. The researchers’ next step is to determine whether the cells’ ability to limit cancer growth in culture dishes ultimately may do the same in patients.

Kimmel Cancer Center researchers are planning studies in a small number of myeloma patients to test the activated marrow T-cells alone and in combination with a myeloma vaccine. "While T-cells from circulating blood traditionally are used in immunotherapy strategies because they are easy to obtain and grow, they often don’t recognize the tumor," says Borrello. "In the case of myeloma, we believe the marrow T-cells have certain surface markers that may help them migrate back to the site of the tumor," he says. "Moreover, the marrow itself contains some type of stimulant to attract the cells," says Kimberly Noonan, researcher and first author of the paper.

To treat patients, the scientists will collect a small amount of bone marrow from patients and with relative ease, grow and activate large numbers of T-cells from that source. These would then be given intravenously back to patients. However, according to Borrello, they may find that an additional cancer vaccine may increase the overall anti-tumor effect of the marrow T-cells.

They also believe that patients with other blood, bone marrow and solid tumors such as breast cancer may benefit from this type of immunotherapy. Evidence from other research groups indicates that breast cancer patients have T-cells in their bone marrow that are specific to their tumor.

Myeloma strikes close to 16,000 Americans annually and kills 11,300.

Other participants of this research include William Matsui, Paolo Serafini, Rebecca Carbley, Gladys Tan, Hyam Levitsky, and Katherine Whartenby from Johns Hopkins; and Jahan Khalili and Mark Bonyhadi from Xcyte Therapies.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>