Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Smart’ immune cells kill more cancer

02.03.2005


In efforts to educate the body to fight off cancer, researchers have found that some immune cells are "smarter" than others. Working with collections of human cells, Johns Hopkins Kimmel Cancer Center scientists tested kill-rates of two kinds of T-cells "primed" to home in on myeloma, a cancer of the bone marrow. Those that live in the bone marrow outperformed their counterparts circulating in the blood by more than 90 percent.



"It is very difficult to design cancer therapies that get the body’s immune system to recognize and kill cancer cells that the system has ignored for a long time," says Ivan Borrello, M.D., assistant professor of oncology and director of the research, which is published in the March 1 issue of Cancer Research. "Now, we have evidence that ’educating’ T-cells in the bone marrow may be the most effective way to get an anti-tumor response."

In nature, T-cells are responsible for identifying cells that are foreign to the body, including genetically altered cancer cells, and marking them for destruction. In the Hopkins study of both kinds of T-cells, those from the blood and bone marrow, scientists mixed them with magnetic beads coated with tumor antibodies, a sort of "artificial intelligence" that activated and expanded the T-cells’ cancer-killing mode.


The marrow T-cells identified not only mature myeloma cells but the primitive cells responsible for the disease. Activated bone marrow T-cells stopped the growth of 86 percent of myeloma stem cell colonies compared to 47 percent for activated t-cells taken from circulating blood. The researchers’ next step is to determine whether the cells’ ability to limit cancer growth in culture dishes ultimately may do the same in patients.

Kimmel Cancer Center researchers are planning studies in a small number of myeloma patients to test the activated marrow T-cells alone and in combination with a myeloma vaccine. "While T-cells from circulating blood traditionally are used in immunotherapy strategies because they are easy to obtain and grow, they often don’t recognize the tumor," says Borrello. "In the case of myeloma, we believe the marrow T-cells have certain surface markers that may help them migrate back to the site of the tumor," he says. "Moreover, the marrow itself contains some type of stimulant to attract the cells," says Kimberly Noonan, researcher and first author of the paper.

To treat patients, the scientists will collect a small amount of bone marrow from patients and with relative ease, grow and activate large numbers of T-cells from that source. These would then be given intravenously back to patients. However, according to Borrello, they may find that an additional cancer vaccine may increase the overall anti-tumor effect of the marrow T-cells.

They also believe that patients with other blood, bone marrow and solid tumors such as breast cancer may benefit from this type of immunotherapy. Evidence from other research groups indicates that breast cancer patients have T-cells in their bone marrow that are specific to their tumor.

Myeloma strikes close to 16,000 Americans annually and kills 11,300.

Other participants of this research include William Matsui, Paolo Serafini, Rebecca Carbley, Gladys Tan, Hyam Levitsky, and Katherine Whartenby from Johns Hopkins; and Jahan Khalili and Mark Bonyhadi from Xcyte Therapies.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>