Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Smart’ immune cells kill more cancer

02.03.2005


In efforts to educate the body to fight off cancer, researchers have found that some immune cells are "smarter" than others. Working with collections of human cells, Johns Hopkins Kimmel Cancer Center scientists tested kill-rates of two kinds of T-cells "primed" to home in on myeloma, a cancer of the bone marrow. Those that live in the bone marrow outperformed their counterparts circulating in the blood by more than 90 percent.



"It is very difficult to design cancer therapies that get the body’s immune system to recognize and kill cancer cells that the system has ignored for a long time," says Ivan Borrello, M.D., assistant professor of oncology and director of the research, which is published in the March 1 issue of Cancer Research. "Now, we have evidence that ’educating’ T-cells in the bone marrow may be the most effective way to get an anti-tumor response."

In nature, T-cells are responsible for identifying cells that are foreign to the body, including genetically altered cancer cells, and marking them for destruction. In the Hopkins study of both kinds of T-cells, those from the blood and bone marrow, scientists mixed them with magnetic beads coated with tumor antibodies, a sort of "artificial intelligence" that activated and expanded the T-cells’ cancer-killing mode.


The marrow T-cells identified not only mature myeloma cells but the primitive cells responsible for the disease. Activated bone marrow T-cells stopped the growth of 86 percent of myeloma stem cell colonies compared to 47 percent for activated t-cells taken from circulating blood. The researchers’ next step is to determine whether the cells’ ability to limit cancer growth in culture dishes ultimately may do the same in patients.

Kimmel Cancer Center researchers are planning studies in a small number of myeloma patients to test the activated marrow T-cells alone and in combination with a myeloma vaccine. "While T-cells from circulating blood traditionally are used in immunotherapy strategies because they are easy to obtain and grow, they often don’t recognize the tumor," says Borrello. "In the case of myeloma, we believe the marrow T-cells have certain surface markers that may help them migrate back to the site of the tumor," he says. "Moreover, the marrow itself contains some type of stimulant to attract the cells," says Kimberly Noonan, researcher and first author of the paper.

To treat patients, the scientists will collect a small amount of bone marrow from patients and with relative ease, grow and activate large numbers of T-cells from that source. These would then be given intravenously back to patients. However, according to Borrello, they may find that an additional cancer vaccine may increase the overall anti-tumor effect of the marrow T-cells.

They also believe that patients with other blood, bone marrow and solid tumors such as breast cancer may benefit from this type of immunotherapy. Evidence from other research groups indicates that breast cancer patients have T-cells in their bone marrow that are specific to their tumor.

Myeloma strikes close to 16,000 Americans annually and kills 11,300.

Other participants of this research include William Matsui, Paolo Serafini, Rebecca Carbley, Gladys Tan, Hyam Levitsky, and Katherine Whartenby from Johns Hopkins; and Jahan Khalili and Mark Bonyhadi from Xcyte Therapies.

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinskimmelcancercenter.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>