Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor prenatal nutrition permanently damages function of insulin-producing cells in the pancreas

25.02.2005


Scientists at Joslin Diabetes Center have discovered one reason why infants with low birth weight have a high potential of developing type 2 diabetes later in life. In studies of mice, the researchers found that poor prenatal nutrition impairs the pancreas’s ability to later secrete enough insulin in response to blood glucose.



"The bottom line is that if you don’t have delivery of enough nutrients from the mother to the baby, the baby’s pancreatic cells will be programmed abnormally," said principal investigator Mary-Elizabeth Patti, M.D., Assistant Investigator in Joslin’s Research Section on Cellular and Molecular Physiology and Assistant Professor of Medicine at Harvard Medical School. "The effect doesn’t show up until later on -- usually not until adolescence or adulthood.

"Many people believe we don’t have much of a prenatal nourishment problem in the United States," she added. "But poor nutrition of a developing baby can occur in many ways other than inadequate nutrition of the mother. It also can occur with abnormal development of the placenta and its blood vessels, or high blood pressure, which damages vessels." In addition, many other factors can result in intrauterine growth restriction and low birth weight.


The Joslin study, published in the March edition of Diabetes, reinforces what scientists have known from previous studies in humans: Infants with low birth weight -- typically defined as under five and one-half pounds -- have a higher risk for developing type 2 diabetes.

To understand the reason, the researchers designed a series of experiments. Using ordinary mice that were not inbred or genetically altered in any way, they mated females with males, dating the day of their pregnancy, which lasts three weeks. They separated the mothers into two groups. The control group ate as much chow as they wanted during the entire pregnancy. The other group also was fully nourished during the first two weeks but undernourished during the third week, restricted to only half the amount. It had a dramatic effect. At birth, their babies weighed 23 percent less than the control group.

After delivery, all babies nursed and all mothers ate a full diet. "By the time the babies were weaned, at three weeks, the low-birth-weight group had caught up with the others, something we see in human babies too," said Dr. Patti. "They looked and acted the same. There was nothing outwardly different about them." The two groups of offspring ate the same chow diet, maintained a similar weight, and neither group was allowed to become overweight, eliminating this common risk factor for diabetes. The only difference was that the mothers had been fed differently during the final week.

As the young mice matured, the researchers tested their blood glucose (sugar) after meals. At age 2 months, the results were similar between the two groups. But over time, differences began to unfold. When 4 months old (comparable to human adolescence), the low-birth-weight babies began showing higher levels of blood glucose. "By 6 months, these levels had spiked abnormally, to 500 mg/dl -- the equivalent of serious, full-blown diabetes in humans," Dr. Patti said.

In type 1 diabetes, the pancreas cannot make the hormone insulin at all; about 1 million Americans must control this form by taking insulin injections. In type 2 -- a disorder affecting an estimated 18 million Americans -- the pancreas doesn’t make enough insulin or the body’s cells develop a resistance to its effect. Without insulin, glucose cannot get into cells to provide energy.

Normally, insulin levels rise or drop in response to glucose levels, keeping everything in balance. But diabetes is a complex metabolic disorder with numerous players such as high levels of blood glucose, cholesterol and other lipids. "The challenge is to figure out which factors are a primary cause of diabetes and which are a consequence, said Dr. Patti. "In our study, we needed to find out what was happening in these mice, before they got the problem."

Their insulin levels provided a clue. In the prenatally undernourished mice, the insulin secretion stayed about the same, regardless of the glucose level in the bloodstream. "That surprised us," Dr. Patti said. "The problem was not insulin resistance. It had something to do with insulin secretion." By contrast, babies who are born overweight (greater than 8 pounds) have higher risk of insulin resistance, not a secretion problem. Something different was happening in the experiment’s low-birth-weight mice.

Did prenatal undernourishment cause the pancreas to not fully develop? The researchers found no difference in pancreas size or numbers of pancreatic beta cells, which produce insulin.

But cultures of the beta cells revealed the answer: the undernourished mice had an abnormal way of responding to glucose. "They were somehow ’programmed’ to secrete a limited amount of insulin later in life, no matter what signal they got from glucose," Dr. Patti said. "The impairment was permanent. It couldn’t be corrected even when the body caught up to normal weight."

Because studies of mice generally are good predictors of human biology, the Joslin study has important implications. "People and their doctors need to understand that prenatal undernourishment makes a person permanently at higher risk for developing diabetes, so prenatal care is important," Dr. Patti said. "Moreover, if someone was born with low weight, they need to pay special attention to prevention tactics, including exercise and weight control to minimize insulin resistance -- the other major factor involved in triggering type 2 diabetes.

"In particular, someone who was a low-birth-weight baby can compound the risk of developing diabetes by becoming overweight," she added. "The stage is set in two ways: low insulin production coupled with resistance to insulin -- a double whammy."

Other researchers involved in the Joslin study included co-authors Jose C. Jimenez-Chillaron, Ph.D., Marcelino Hernandez-Valencia, M.D.; also Carolyn Reamer, Simon Fisher, M.D., Ph.D., Allison Joszi, Ph.D., Michael Hirshman, Aysin Oge, M.D., Shana Walrond, Roberta Przybyla, Carol N. Boozer, D.Sc., of St. Luke’s-Roosevelt Hospital Center in New York, and Laurie Goodyear, Ph.D., head of the Section on Metabolism at Joslin. The research was funded by the American Diabetes Association and the Adler Foundation.

Marjorie Dwyer | EurekAlert!
Further information:
http://www.joslin.harvard.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>