Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friends, Enemies Communicate With Plants in Similar Ways

23.02.2005


Two soil-dwelling strangers – a friend and a foe – approach a plant and communicate with it in order to enter a partnership. The friend wants to trade nitrogen for food. The foe is a parasite that wants to burrow in and harm the plant.


Fluorescence confocal microscope images of plant epidermal and root hair cells expressing Green Fluorescent Protein (GFP) fused with microtubule associated protein, MAP4 (left), and actin binding protein, Talin (right). New evidence confirms that root-knot nematodes and rhizobia produce an essentially identical cytoskeletal response in these tiny root hairs of L. japonicus.



In a new finding published in Proceedings of the National Academy of Sciences, researchers at North Carolina State University have found that the two strangers communicate with the plant in very similar ways. The plant’s responses to both friend and foe are also remarkably similar.

Using high-tech microscopy and florescent imaging techniques that allow for real-time, three-dimensional study in living cells over time, the NC State researchers discovered that the model legume Lotus japonicus responded similarly to signals from both rhizobia, the friends that fix nitrogen for the plant, and root-knot nematodes, the parasitic foes that want to harm the plant. Signals from both outsiders induce rapid changes in distribution of the plant’s cytoskeleton, which is part of a pathway that leads to a series of growth changes that include the formation of either nodules housing bacteria or giant cells from which the nematodes feed.


The scientists also discovered that, like rhizobia and contrary to popular belief, the root-knot nematode signals plants from a distance and therefore does not need to attach itself to the plant to elicit a response.

When the researchers studied L. japonicus plants missing the receptors that receive signals from other organisms – certain genes in the plant were modified to accomplish this – they discovered that the plants failed to respond to signals from both friend and foe, and therefore no changes were viewed in the plant’s cytoskeleton. “This exquisite system that plants have developed to allow beneficial interactions with other organisms like rhizobia is being exploited by nematodes,” says Dr. David Bird, associate professor of plant pathology, co-director of NC State’s Center for the Biology of Nematode Parasitism and co-author of the paper. “Nematodes have not only found a weak link in plants but may be using the very same bacterial machinery against it.”

The study started as a graduate research project of Ravisha R. Weerasinghe, the lead author of the paper, in the lab of Dr. Nina Allen, professor of botany and co-author of the paper. Weerasinghe first observed the changes in the plants triggered by signals from rhizobia, called Nod factors, and then saw the similar changes occurring when plants were signaled by root-knot nematodes. In the paper, the researchers call the nematodes’ signals “Nematode factors.”

After rhizobia perceive plant signals and send back Nod factors, the plant’s root hairs curl around the good bacteria. The rhizobia then migrate into the root and form special structures called nodules, where they turn atmospheric nitrogen into usable nitrogen for the plant and, in return, take some of the plant’s energy to survive. A similar relationship appeared when Weerasinghe studied the signals between plants and nematodes, even though the nematode provides no benefit to its host. Root-knot nematodes form feeding cells – so-called giant cells – in the plant and later galls or knots on it.

“We don’t know the precise structure of Nematode factor, but it appears that the nematodes may have actually acquired genes from rhizobia to exploit this signal pathway,” Bird says.

The research was funded by the National Science Foundation and the North Carolina Research Station.

Dr. Nina Allen | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>