Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Friends, Enemies Communicate With Plants in Similar Ways

23.02.2005


Two soil-dwelling strangers – a friend and a foe – approach a plant and communicate with it in order to enter a partnership. The friend wants to trade nitrogen for food. The foe is a parasite that wants to burrow in and harm the plant.


Fluorescence confocal microscope images of plant epidermal and root hair cells expressing Green Fluorescent Protein (GFP) fused with microtubule associated protein, MAP4 (left), and actin binding protein, Talin (right). New evidence confirms that root-knot nematodes and rhizobia produce an essentially identical cytoskeletal response in these tiny root hairs of L. japonicus.



In a new finding published in Proceedings of the National Academy of Sciences, researchers at North Carolina State University have found that the two strangers communicate with the plant in very similar ways. The plant’s responses to both friend and foe are also remarkably similar.

Using high-tech microscopy and florescent imaging techniques that allow for real-time, three-dimensional study in living cells over time, the NC State researchers discovered that the model legume Lotus japonicus responded similarly to signals from both rhizobia, the friends that fix nitrogen for the plant, and root-knot nematodes, the parasitic foes that want to harm the plant. Signals from both outsiders induce rapid changes in distribution of the plant’s cytoskeleton, which is part of a pathway that leads to a series of growth changes that include the formation of either nodules housing bacteria or giant cells from which the nematodes feed.


The scientists also discovered that, like rhizobia and contrary to popular belief, the root-knot nematode signals plants from a distance and therefore does not need to attach itself to the plant to elicit a response.

When the researchers studied L. japonicus plants missing the receptors that receive signals from other organisms – certain genes in the plant were modified to accomplish this – they discovered that the plants failed to respond to signals from both friend and foe, and therefore no changes were viewed in the plant’s cytoskeleton. “This exquisite system that plants have developed to allow beneficial interactions with other organisms like rhizobia is being exploited by nematodes,” says Dr. David Bird, associate professor of plant pathology, co-director of NC State’s Center for the Biology of Nematode Parasitism and co-author of the paper. “Nematodes have not only found a weak link in plants but may be using the very same bacterial machinery against it.”

The study started as a graduate research project of Ravisha R. Weerasinghe, the lead author of the paper, in the lab of Dr. Nina Allen, professor of botany and co-author of the paper. Weerasinghe first observed the changes in the plants triggered by signals from rhizobia, called Nod factors, and then saw the similar changes occurring when plants were signaled by root-knot nematodes. In the paper, the researchers call the nematodes’ signals “Nematode factors.”

After rhizobia perceive plant signals and send back Nod factors, the plant’s root hairs curl around the good bacteria. The rhizobia then migrate into the root and form special structures called nodules, where they turn atmospheric nitrogen into usable nitrogen for the plant and, in return, take some of the plant’s energy to survive. A similar relationship appeared when Weerasinghe studied the signals between plants and nematodes, even though the nematode provides no benefit to its host. Root-knot nematodes form feeding cells – so-called giant cells – in the plant and later galls or knots on it.

“We don’t know the precise structure of Nematode factor, but it appears that the nematodes may have actually acquired genes from rhizobia to exploit this signal pathway,” Bird says.

The research was funded by the National Science Foundation and the North Carolina Research Station.

Dr. Nina Allen | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>