Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers see hope for treating blindness in preemies

23.02.2005


Hoping to prevent blindness in premature babies, UT Southwestern Medical Center researchers have identified a protein that responds to oxygen levels in cells and tissues and also affects the developing eye.



Premature birth carries the risk of multiple disabilities, including retinopathy of prematurity, or ROP. ROP affects the retina, the part of the eye that detects light before it is transformed in the brain to an image. ROP babies have poor vision, and in many cases, go blind.

In a study to be published online and in the March issue of Investigative Ophthalmology and Visual Science, Dr. Joseph Garcia, assistant professor of internal medicine at UT Southwestern, and colleagues, have identified a protein in mice called HIF-2a, which is important in retina formation. Controlling this protein, which is also found in humans, may help doctors treat or even prevent ROP before it happens.


Dr. Garcia examined the eyes of mice genetically engineered to lack the HIF-2a gene. These mice could not make HIF-2a protein and had multiple visual defects associated with blindness. They were blind by 1 month of age. "These mice initially behaved as if they were blind," Dr. Garcia said. "And indeed, when we examined them, we found they had severe retinopathy."

Physiological studes using light, conducted by Dr. David Birch, collaborating scientist from the Retina Foundation of the Southwest and adjunct professor of ophthalmology at UT Southwestern, determined how their eyes were failing. Additional investigation of the mice lacking HIF-2a revealed extensive malformation of the blood vessels in their eyes, leading to ischemia, or reduced blood flow.

HIF-2a belongs to a class of proteins called transcription factors, which turn specific genes in the cell nucleus on in response to signals from the environment. Genes activated by HIF-2a create proteins that help the cell respond to noxious stimuli.

For HIF-2a, the stimulus is hypoxia, a condition in which oxygen levels are too low. While appropriate hypoxia is required for proper development in many cases, inappropriate or prolonged hypoxia can damage cells and tissues. HIF-2a acts on genes that help deal with the low oxygen environment by stimulating the production of antioxidant molecules and promoting blood and blood vessel formation to deliver much-needed oxygen.

Biochemical tests revealed that antioxidant genes turned on by HIF-2a were inefficiently activated when HIF-2a was missing. In addition, the gene for erythropoietin (Epo), essential for blood and blood vessel development, was also affected when HIF-2a was missing. For premature babies, it’s not the lack of HIF-2a but the hyperactivity of the protein that may influence the development of ROP, Dr. Garcia said.

Preemies often have difficulty breathing due to under-developed lungs and are housed in special incubators that contain a higher percentage of oxygen than found in normal air. Exposure to this artificial environment tricks their bodies into accepting the high concentration of oxygen as normal.

When they are healthy enough, preemies can leave their incubators and start breathing normally. Their bodies, however, accustomed to higher oxygen, perceive normal oxygen as too low, and their bodies set off the protective hypoxic response. In the retina, HIF-2a may be triggered inappropriately, Dr. Garcia suggested, and unnecessary blood vessels are created. "Finding a way to shut down HIF-2a in ROP babies could prevent blindness when they come back down to regular oxygen," he said.

Dr. Yu-Guang He, assistant professor of ophthalmology at UT Southwestern, sees ROP babies in his clinical practice. "Of preemies weighing less than 2.75 pounds, 50 percent will develop ROP, and of these, 10 percent develop the most severe type, which leads to blindness. Dr. Garcia’s work reveals an important mechanism in the development of ROP, with potential to prevent this devastating ailment. It provides new hope for these babies," he said.

Previous studies showed that antioxidant enzymes are regulated by HIF-2a. Antioxidant enzymes are vitally important for protecting against oxygen radicals, the levels of which are high in ischemic tissues such as in the eyes of mice lacking HIF-2a, Dr. Garcia said. "The ability of HIF-2a to control multiple essential genes may be required for proper eye development," he said. "Furthermore, there may be additional, and as of yet unidentified, HIF-2a controlled genes that also are important for eye development."

Other contributors to this research were Dr. Kan Ding, postdoctoral fellow in internal medicine at UT Southwestern, Dr. Marzia Scortegagna, former postdoctoral fellow in internal medicine, and Robyn Seaman, research assistant at the Retina Foundation of the Southwest.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>