Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers see hope for treating blindness in preemies

23.02.2005


Hoping to prevent blindness in premature babies, UT Southwestern Medical Center researchers have identified a protein that responds to oxygen levels in cells and tissues and also affects the developing eye.



Premature birth carries the risk of multiple disabilities, including retinopathy of prematurity, or ROP. ROP affects the retina, the part of the eye that detects light before it is transformed in the brain to an image. ROP babies have poor vision, and in many cases, go blind.

In a study to be published online and in the March issue of Investigative Ophthalmology and Visual Science, Dr. Joseph Garcia, assistant professor of internal medicine at UT Southwestern, and colleagues, have identified a protein in mice called HIF-2a, which is important in retina formation. Controlling this protein, which is also found in humans, may help doctors treat or even prevent ROP before it happens.


Dr. Garcia examined the eyes of mice genetically engineered to lack the HIF-2a gene. These mice could not make HIF-2a protein and had multiple visual defects associated with blindness. They were blind by 1 month of age. "These mice initially behaved as if they were blind," Dr. Garcia said. "And indeed, when we examined them, we found they had severe retinopathy."

Physiological studes using light, conducted by Dr. David Birch, collaborating scientist from the Retina Foundation of the Southwest and adjunct professor of ophthalmology at UT Southwestern, determined how their eyes were failing. Additional investigation of the mice lacking HIF-2a revealed extensive malformation of the blood vessels in their eyes, leading to ischemia, or reduced blood flow.

HIF-2a belongs to a class of proteins called transcription factors, which turn specific genes in the cell nucleus on in response to signals from the environment. Genes activated by HIF-2a create proteins that help the cell respond to noxious stimuli.

For HIF-2a, the stimulus is hypoxia, a condition in which oxygen levels are too low. While appropriate hypoxia is required for proper development in many cases, inappropriate or prolonged hypoxia can damage cells and tissues. HIF-2a acts on genes that help deal with the low oxygen environment by stimulating the production of antioxidant molecules and promoting blood and blood vessel formation to deliver much-needed oxygen.

Biochemical tests revealed that antioxidant genes turned on by HIF-2a were inefficiently activated when HIF-2a was missing. In addition, the gene for erythropoietin (Epo), essential for blood and blood vessel development, was also affected when HIF-2a was missing. For premature babies, it’s not the lack of HIF-2a but the hyperactivity of the protein that may influence the development of ROP, Dr. Garcia said.

Preemies often have difficulty breathing due to under-developed lungs and are housed in special incubators that contain a higher percentage of oxygen than found in normal air. Exposure to this artificial environment tricks their bodies into accepting the high concentration of oxygen as normal.

When they are healthy enough, preemies can leave their incubators and start breathing normally. Their bodies, however, accustomed to higher oxygen, perceive normal oxygen as too low, and their bodies set off the protective hypoxic response. In the retina, HIF-2a may be triggered inappropriately, Dr. Garcia suggested, and unnecessary blood vessels are created. "Finding a way to shut down HIF-2a in ROP babies could prevent blindness when they come back down to regular oxygen," he said.

Dr. Yu-Guang He, assistant professor of ophthalmology at UT Southwestern, sees ROP babies in his clinical practice. "Of preemies weighing less than 2.75 pounds, 50 percent will develop ROP, and of these, 10 percent develop the most severe type, which leads to blindness. Dr. Garcia’s work reveals an important mechanism in the development of ROP, with potential to prevent this devastating ailment. It provides new hope for these babies," he said.

Previous studies showed that antioxidant enzymes are regulated by HIF-2a. Antioxidant enzymes are vitally important for protecting against oxygen radicals, the levels of which are high in ischemic tissues such as in the eyes of mice lacking HIF-2a, Dr. Garcia said. "The ability of HIF-2a to control multiple essential genes may be required for proper eye development," he said. "Furthermore, there may be additional, and as of yet unidentified, HIF-2a controlled genes that also are important for eye development."

Other contributors to this research were Dr. Kan Ding, postdoctoral fellow in internal medicine at UT Southwestern, Dr. Marzia Scortegagna, former postdoctoral fellow in internal medicine, and Robyn Seaman, research assistant at the Retina Foundation of the Southwest.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>