Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers see hope for treating blindness in preemies

23.02.2005


Hoping to prevent blindness in premature babies, UT Southwestern Medical Center researchers have identified a protein that responds to oxygen levels in cells and tissues and also affects the developing eye.



Premature birth carries the risk of multiple disabilities, including retinopathy of prematurity, or ROP. ROP affects the retina, the part of the eye that detects light before it is transformed in the brain to an image. ROP babies have poor vision, and in many cases, go blind.

In a study to be published online and in the March issue of Investigative Ophthalmology and Visual Science, Dr. Joseph Garcia, assistant professor of internal medicine at UT Southwestern, and colleagues, have identified a protein in mice called HIF-2a, which is important in retina formation. Controlling this protein, which is also found in humans, may help doctors treat or even prevent ROP before it happens.


Dr. Garcia examined the eyes of mice genetically engineered to lack the HIF-2a gene. These mice could not make HIF-2a protein and had multiple visual defects associated with blindness. They were blind by 1 month of age. "These mice initially behaved as if they were blind," Dr. Garcia said. "And indeed, when we examined them, we found they had severe retinopathy."

Physiological studes using light, conducted by Dr. David Birch, collaborating scientist from the Retina Foundation of the Southwest and adjunct professor of ophthalmology at UT Southwestern, determined how their eyes were failing. Additional investigation of the mice lacking HIF-2a revealed extensive malformation of the blood vessels in their eyes, leading to ischemia, or reduced blood flow.

HIF-2a belongs to a class of proteins called transcription factors, which turn specific genes in the cell nucleus on in response to signals from the environment. Genes activated by HIF-2a create proteins that help the cell respond to noxious stimuli.

For HIF-2a, the stimulus is hypoxia, a condition in which oxygen levels are too low. While appropriate hypoxia is required for proper development in many cases, inappropriate or prolonged hypoxia can damage cells and tissues. HIF-2a acts on genes that help deal with the low oxygen environment by stimulating the production of antioxidant molecules and promoting blood and blood vessel formation to deliver much-needed oxygen.

Biochemical tests revealed that antioxidant genes turned on by HIF-2a were inefficiently activated when HIF-2a was missing. In addition, the gene for erythropoietin (Epo), essential for blood and blood vessel development, was also affected when HIF-2a was missing. For premature babies, it’s not the lack of HIF-2a but the hyperactivity of the protein that may influence the development of ROP, Dr. Garcia said.

Preemies often have difficulty breathing due to under-developed lungs and are housed in special incubators that contain a higher percentage of oxygen than found in normal air. Exposure to this artificial environment tricks their bodies into accepting the high concentration of oxygen as normal.

When they are healthy enough, preemies can leave their incubators and start breathing normally. Their bodies, however, accustomed to higher oxygen, perceive normal oxygen as too low, and their bodies set off the protective hypoxic response. In the retina, HIF-2a may be triggered inappropriately, Dr. Garcia suggested, and unnecessary blood vessels are created. "Finding a way to shut down HIF-2a in ROP babies could prevent blindness when they come back down to regular oxygen," he said.

Dr. Yu-Guang He, assistant professor of ophthalmology at UT Southwestern, sees ROP babies in his clinical practice. "Of preemies weighing less than 2.75 pounds, 50 percent will develop ROP, and of these, 10 percent develop the most severe type, which leads to blindness. Dr. Garcia’s work reveals an important mechanism in the development of ROP, with potential to prevent this devastating ailment. It provides new hope for these babies," he said.

Previous studies showed that antioxidant enzymes are regulated by HIF-2a. Antioxidant enzymes are vitally important for protecting against oxygen radicals, the levels of which are high in ischemic tissues such as in the eyes of mice lacking HIF-2a, Dr. Garcia said. "The ability of HIF-2a to control multiple essential genes may be required for proper eye development," he said. "Furthermore, there may be additional, and as of yet unidentified, HIF-2a controlled genes that also are important for eye development."

Other contributors to this research were Dr. Kan Ding, postdoctoral fellow in internal medicine at UT Southwestern, Dr. Marzia Scortegagna, former postdoctoral fellow in internal medicine, and Robyn Seaman, research assistant at the Retina Foundation of the Southwest.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>