Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common virus becomes a new target for cancer treatment

17.02.2005


A typically innocuous virus found in 90 percent of people worldwide is the key to a new treatment for a cancer particularly common in North Africa and Southeast Asia. A new study showing that antigens produced by the Epstein Barr virus may provide an ideal target for therapy will be published in the March 1, 2005, issue of Blood, the official journal of the American Society of Hematology.



Ten patients diagnosed with advanced nasopharyngeal carcinoma took part in the study – these patients also tested positive for the Epstein Barr virus, a member of the herpes family responsible for the "kissing disease" (mononucleosis) and commonly associated with this cancer’s tumors.

Patients were given intravenous doses of specialized T cells that specifically targeted antigens produced by the Epstein Barr virus. Developed by researchers from the Center for Cell and Gene Therapy at Baylor College of Medicine, Methodist Hospital in Houston, and Texas Children’s Hospital, these T cells were created using the patient’s own blood to recognize the antigens and destroy the cancerous cells harboring the virus. The treatment was well tolerated in all but one patient, who had pre-existing facial swelling that increased after the infusion.


"Radiation and chemotherapy, the traditional treatments for nasopharyngeal carcinoma, frequently fail and can cause severe long-term side effects," said senior study author Helen Heslop, M.D., Professor of Medicine and Pediatrics at Baylor College of Medicine. "There is a compelling need for therapies that can improve disease-free survival without severe toxicity. This study demonstrates that virus-specific T cells show remarkable activity in some patients with this cancer and this may lead to new treatments for nasopharyngeal carcinoma."

A majority of the patients (six) remain completely disease-free one to two years after the treatment. Two patients had no response to the treatment. One patient’s cancer progressed after the infusion, which required the addition of chemotherapy. However, the patient experienced a partial remission, whereas previous chemotherapy treatments alone had had no effect. The tenth patient’s disease did not better or worsen, but remained stable after treatment.

"This very important work combines the use of a novel target – the antigen produced by the Epstein Barr virus – with the use of cells directed at that protein," notes Donald M. Miller, M.D., Ph.D., Director of the James Graham Brown Cancer Center in Louisville, Kentucky. "The authors provide considerable hope that this approach will realize the important potential of cell-based therapies."

Laura Stark | EurekAlert!
Further information:
http://www.hematology.org
http://www.bloodjournal.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>