Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common virus becomes a new target for cancer treatment

17.02.2005


A typically innocuous virus found in 90 percent of people worldwide is the key to a new treatment for a cancer particularly common in North Africa and Southeast Asia. A new study showing that antigens produced by the Epstein Barr virus may provide an ideal target for therapy will be published in the March 1, 2005, issue of Blood, the official journal of the American Society of Hematology.



Ten patients diagnosed with advanced nasopharyngeal carcinoma took part in the study – these patients also tested positive for the Epstein Barr virus, a member of the herpes family responsible for the "kissing disease" (mononucleosis) and commonly associated with this cancer’s tumors.

Patients were given intravenous doses of specialized T cells that specifically targeted antigens produced by the Epstein Barr virus. Developed by researchers from the Center for Cell and Gene Therapy at Baylor College of Medicine, Methodist Hospital in Houston, and Texas Children’s Hospital, these T cells were created using the patient’s own blood to recognize the antigens and destroy the cancerous cells harboring the virus. The treatment was well tolerated in all but one patient, who had pre-existing facial swelling that increased after the infusion.


"Radiation and chemotherapy, the traditional treatments for nasopharyngeal carcinoma, frequently fail and can cause severe long-term side effects," said senior study author Helen Heslop, M.D., Professor of Medicine and Pediatrics at Baylor College of Medicine. "There is a compelling need for therapies that can improve disease-free survival without severe toxicity. This study demonstrates that virus-specific T cells show remarkable activity in some patients with this cancer and this may lead to new treatments for nasopharyngeal carcinoma."

A majority of the patients (six) remain completely disease-free one to two years after the treatment. Two patients had no response to the treatment. One patient’s cancer progressed after the infusion, which required the addition of chemotherapy. However, the patient experienced a partial remission, whereas previous chemotherapy treatments alone had had no effect. The tenth patient’s disease did not better or worsen, but remained stable after treatment.

"This very important work combines the use of a novel target – the antigen produced by the Epstein Barr virus – with the use of cells directed at that protein," notes Donald M. Miller, M.D., Ph.D., Director of the James Graham Brown Cancer Center in Louisville, Kentucky. "The authors provide considerable hope that this approach will realize the important potential of cell-based therapies."

Laura Stark | EurekAlert!
Further information:
http://www.hematology.org
http://www.bloodjournal.org

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>