Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inherited gene may increase risk for prostate cancer by 50%

17.02.2005


Results point to novel pathway for development of prostate cancer



A single gene variant may increase a man’s risk of prostate cancer by 50%, according to a new study led by researchers at Mount Sinai School of Medicine and published this week in Cancer Research.

In 2001, Mount Sinai researchers published a study in Science that showed that a gene, known as KLF6, fails to function properly in at least 50 to 60 percent of all prostate cancers. This was the first single gene shown to be responsible for the majority of cases of this disease, which affects approximately 200,000 men each year.


This finding led to the question as to whether or not mutations in this gene that are present from birth might increase an individuals susceptibility to prostate cancer. John Martignetti, MD, PhD, Assistant Professor of Human Genetics at Mount Sinai and colleagues addressed this question by analyzing differences in the KLF6 gene in 3,411 blood samples from men in registries of three major cancer centers (Johns Hopkins University, the Mayo Clinic and Fred Hutchinson Cancer Research Center). Blood samples were divided into three groups based on the individuals from which they were taken – those with prostate cancer who had a family history of prostate cancer, those with prostate cancer and no family history of the disease, and those without prostate cancer.

About 17% of the patients with a family history of the disease and 15% of patients with no such history carried at lease one copy a single KLF6 variant, but only 11% of the controls had a copy. The significant difference in prevalence of the variant among three groups indicates that individuals with this particular gene variant face an approximately 50% increased risk for developing prostate cancer.

In the 2001 study, Dr. Martignetti, Scott Friedman, MD, Fishberg Professor of Medicine and Chief of the Division of Liver Diseases, and Goutham Narla, an MD/PhD student at Mount Sinai discovered that KLF6, functions as a tumor suppressor gene. Its role is to restrict cell growth. When KLF6 fails to function properly cell growth goes unchecked and cancer may results. It has since been discovered that KLF6 defects are implicated in a number of other human cancers, including colorectal, lung and liver.

The variant of the gene investigated in the report published this week produces a an altered version of the KLF6 protein. Rather than entering the cell nucleus to suppress cell growth as the KLF6 protein usually does, this altered version remains in the cytoplasm, where it has the opposite effect, thus increasing cell growth and potentially leading to the development of caner.

Prostate cancer is among the most prevalent cancers worldwide and is the second leading cause of male cancer-related death in the United States. Incidence is expected to double among men over age 65 in the next 25 years, according to the authors. "Our findings highlight a completely novel and previously unexplored pathway for the development of prostate cancer," said Dr. Martignetti. "Ultimately we plan to investigate the potential of this gene as a diagnostic tool, an indicator of a patients risk for prostate cancer, and as a potential target for new treatments."

The Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>