Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inherited gene may increase risk for prostate cancer by 50%

17.02.2005


Results point to novel pathway for development of prostate cancer



A single gene variant may increase a man’s risk of prostate cancer by 50%, according to a new study led by researchers at Mount Sinai School of Medicine and published this week in Cancer Research.

In 2001, Mount Sinai researchers published a study in Science that showed that a gene, known as KLF6, fails to function properly in at least 50 to 60 percent of all prostate cancers. This was the first single gene shown to be responsible for the majority of cases of this disease, which affects approximately 200,000 men each year.


This finding led to the question as to whether or not mutations in this gene that are present from birth might increase an individuals susceptibility to prostate cancer. John Martignetti, MD, PhD, Assistant Professor of Human Genetics at Mount Sinai and colleagues addressed this question by analyzing differences in the KLF6 gene in 3,411 blood samples from men in registries of three major cancer centers (Johns Hopkins University, the Mayo Clinic and Fred Hutchinson Cancer Research Center). Blood samples were divided into three groups based on the individuals from which they were taken – those with prostate cancer who had a family history of prostate cancer, those with prostate cancer and no family history of the disease, and those without prostate cancer.

About 17% of the patients with a family history of the disease and 15% of patients with no such history carried at lease one copy a single KLF6 variant, but only 11% of the controls had a copy. The significant difference in prevalence of the variant among three groups indicates that individuals with this particular gene variant face an approximately 50% increased risk for developing prostate cancer.

In the 2001 study, Dr. Martignetti, Scott Friedman, MD, Fishberg Professor of Medicine and Chief of the Division of Liver Diseases, and Goutham Narla, an MD/PhD student at Mount Sinai discovered that KLF6, functions as a tumor suppressor gene. Its role is to restrict cell growth. When KLF6 fails to function properly cell growth goes unchecked and cancer may results. It has since been discovered that KLF6 defects are implicated in a number of other human cancers, including colorectal, lung and liver.

The variant of the gene investigated in the report published this week produces a an altered version of the KLF6 protein. Rather than entering the cell nucleus to suppress cell growth as the KLF6 protein usually does, this altered version remains in the cytoplasm, where it has the opposite effect, thus increasing cell growth and potentially leading to the development of caner.

Prostate cancer is among the most prevalent cancers worldwide and is the second leading cause of male cancer-related death in the United States. Incidence is expected to double among men over age 65 in the next 25 years, according to the authors. "Our findings highlight a completely novel and previously unexplored pathway for the development of prostate cancer," said Dr. Martignetti. "Ultimately we plan to investigate the potential of this gene as a diagnostic tool, an indicator of a patients risk for prostate cancer, and as a potential target for new treatments."

The Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>