Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers finds novel chemistry at work to provide parrot’s vibrant red colors

16.02.2005


Parrots, long a favorite pet animal, are attractive to owners because of their vibrant colors. But those colors may mean more to parrots than what meets the eye.


Green-winged macaws


Military macaws



For more than a century, biochemists have known that parrots use an unusual set of pigments to produce their rainbow of plumage colors, but their biochemical identity has remained elusive. Now, an Arizona State University researcher has uncovered the chemistry behind the colors of parrots, describing on a molecular level what is responsible for their bright red feathers.

The work casts a new light on what is chemically responsible for the colors of birds, and defies previous assumptions and explanations for color variations in parrots, said Kevin McGraw, an assistant professor in ASU’s School of Life Sciences. "Evolutionary biologists have not really thought hard about parrot coloration," said McGraw. "This research is exposing a whole new world of color communication in parrots and the potential physiological and biochemical roles of the new molecules we found in our work."


Details of the work are in a paper, "Distribution of unique red feather pigments in parrots," by McGraw and Mary Nogare, a parrot fancier from Snoqualmie, Wash., published in the Feb. 16, 2005 issue of the journal Biology Letters. Animals, like birds and fishes, commonly use biochromes like carotenoids to acquire red, orange or yellow coloration, but McGraw and Nogare found that these compounds are not responsible for the red colors found in the parrot species they sampled.

The researchers used a chemical analysis technique called high-performance liquid chromatography to survey the pigments present in red parrot feathers. McGraw and Nogare collected and analyzed samples from 44 parrot species that have red feathers. Overall, there are some 350 species of parrots, 80 percent of which have red in their plumage.

They found a suite of five molecules, called polyenal lipochromes (or psittacofulvins), that color parrot plumage red in all of the species studied. "We’ve uncovered a system where all red parrots use the same set of molecules to color themselves," McGraw said. "It is a unique pigment found nowhere else in the world. We are fascinated at how parrots are able to do this. "The fact that there is a single set of molecules unique to and widespread among parrots, suggests that it is a pretty important evolutionary novelty, and one we should carefully consider when we think about why parrots are so strikingly colorful," McGraw said.

McGraw has been studying the colors of birds for seven years. He first became interested in the behavioral significance of bird colors as a form of visual communication within a species (e.g. to denote status or attractiveness). As he studied these aspects, he wanted to understand more about what makes the colors of the birds possible, and then focused on "deconstructing the color into its component parts."

McGraw said an interesting aspect of the five polyenal lipochromes that provide the red in parrots, is that the pigment is found only in the bird’s feathers and nowhere else in the body of the bird, indicating that parrots manufacture these molecules internally and directly at the maturing follicles of the growing, colorful plumage.

In addition, these pigments may play a valuable role in maintaining the health of parrots. McGraw cites an independent study on the parrot pigments that suggests that they can act as anti-oxidants to quench free radicals and potentially protect cells and tissues in the body from oxidative damage.

Now, McGraw says, he’s interested in learning more about the connection between the red colors and anti-oxidants within and among parrot species, as well as "to specifically explore the balance of naturally and sexually selected costs and benefits to becoming colorful.

"Parrots are unusual among birds, in that they almost without exception display fantastic colors but exhibit very little variation in color within a species – at least in colors visible to us. Parrots in general may not be using color in the classic cases of mate choice or competitive ability," he said. "Exactly why they are so uniformly colored remains an interesting mystery to us – one we want to investigate."

"There is a sea of colors in birds," he added. "Our goal is to learn why there is such a diversity from an evolutionary standpoint."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>