Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers finds novel chemistry at work to provide parrot’s vibrant red colors

16.02.2005


Parrots, long a favorite pet animal, are attractive to owners because of their vibrant colors. But those colors may mean more to parrots than what meets the eye.


Green-winged macaws


Military macaws



For more than a century, biochemists have known that parrots use an unusual set of pigments to produce their rainbow of plumage colors, but their biochemical identity has remained elusive. Now, an Arizona State University researcher has uncovered the chemistry behind the colors of parrots, describing on a molecular level what is responsible for their bright red feathers.

The work casts a new light on what is chemically responsible for the colors of birds, and defies previous assumptions and explanations for color variations in parrots, said Kevin McGraw, an assistant professor in ASU’s School of Life Sciences. "Evolutionary biologists have not really thought hard about parrot coloration," said McGraw. "This research is exposing a whole new world of color communication in parrots and the potential physiological and biochemical roles of the new molecules we found in our work."


Details of the work are in a paper, "Distribution of unique red feather pigments in parrots," by McGraw and Mary Nogare, a parrot fancier from Snoqualmie, Wash., published in the Feb. 16, 2005 issue of the journal Biology Letters. Animals, like birds and fishes, commonly use biochromes like carotenoids to acquire red, orange or yellow coloration, but McGraw and Nogare found that these compounds are not responsible for the red colors found in the parrot species they sampled.

The researchers used a chemical analysis technique called high-performance liquid chromatography to survey the pigments present in red parrot feathers. McGraw and Nogare collected and analyzed samples from 44 parrot species that have red feathers. Overall, there are some 350 species of parrots, 80 percent of which have red in their plumage.

They found a suite of five molecules, called polyenal lipochromes (or psittacofulvins), that color parrot plumage red in all of the species studied. "We’ve uncovered a system where all red parrots use the same set of molecules to color themselves," McGraw said. "It is a unique pigment found nowhere else in the world. We are fascinated at how parrots are able to do this. "The fact that there is a single set of molecules unique to and widespread among parrots, suggests that it is a pretty important evolutionary novelty, and one we should carefully consider when we think about why parrots are so strikingly colorful," McGraw said.

McGraw has been studying the colors of birds for seven years. He first became interested in the behavioral significance of bird colors as a form of visual communication within a species (e.g. to denote status or attractiveness). As he studied these aspects, he wanted to understand more about what makes the colors of the birds possible, and then focused on "deconstructing the color into its component parts."

McGraw said an interesting aspect of the five polyenal lipochromes that provide the red in parrots, is that the pigment is found only in the bird’s feathers and nowhere else in the body of the bird, indicating that parrots manufacture these molecules internally and directly at the maturing follicles of the growing, colorful plumage.

In addition, these pigments may play a valuable role in maintaining the health of parrots. McGraw cites an independent study on the parrot pigments that suggests that they can act as anti-oxidants to quench free radicals and potentially protect cells and tissues in the body from oxidative damage.

Now, McGraw says, he’s interested in learning more about the connection between the red colors and anti-oxidants within and among parrot species, as well as "to specifically explore the balance of naturally and sexually selected costs and benefits to becoming colorful.

"Parrots are unusual among birds, in that they almost without exception display fantastic colors but exhibit very little variation in color within a species – at least in colors visible to us. Parrots in general may not be using color in the classic cases of mate choice or competitive ability," he said. "Exactly why they are so uniformly colored remains an interesting mystery to us – one we want to investigate."

"There is a sea of colors in birds," he added. "Our goal is to learn why there is such a diversity from an evolutionary standpoint."

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>