Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uric acid may help reduce effects of spinal cord injury

15.02.2005


Increasing levels of uric acid, a metabolic breakdown product found in blood and urine, may help cut some of the potentially devastating "secondary" cellular damage that occurs following a spinal cord injury, say researchers at Jefferson Medical College. The finding may lead to new treatments for such injuries.

After a spinal cord injury, the body’s inflammatory response may actually make things worse, releasing a variety of potentially harmful chemicals that can make the injury more severe. J. Craig Hooper, Ph.D., associate professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia and at Jefferson’s Kimmel Cancer Center and his colleagues there and at the University of Messina in Italy looked at whether uric acid treatment could actually prevent some of this secondary damage following such an injury in mice. Uric acid was known to reduce inflammation damage related to a compound call peroxynitrite.
They found that mice that received uric acid just before and right after an experimental spinal cord injury recovered motor function both faster and to a greater extent than mice that received only saline. Subsequent tests found that the uric acid actually prevented inflammation and some damage. Tests in cell culture showed that uric acid protected spinal cord neurons from peroxynitrite-related damage. The scientists report their findings Feb. 14, 2005 in the Proceedings of the National Academy of Sciences.


According to Dr. Hooper, secondary spinal cord damage – the so-called destructive cascade – begins within a few hours after the initial injury. "The effect is driven by nonspecific cells such as neutrophils," he explains, a type of white blood cell and a key player in the body’s inflammatory response to injury. "We know neutrophils make peroxynitrite, which is a major trigger in opening the blood-brain barrier."

Dr. Hooper says peroxynitrite is known to contribute to cell damage in neurodegenerative disorders, and is known to be produced as a result of the body’s inflammatory response.

"In the paper, we showed that uric acid modulates peroxynitrite’s effects," Dr. Hooper says. "It’s incredibly useful in preventing the damage related to peroxynitrite as a toxic molecule. More importantly, it stops the secondary injury cascade by preventing the neutrophils from getting into spinal cord tissues through the blood-brain barrier."

Dr. Hooper and his co-workers compared injured rats that received saline to spinal cord-injured rats that were given uric acid. "The injury causes a tremendous amount of damage in the mice – less than 50 percent range of motion in one or two hind limb joints remain immediately following the injury," he says. Those given saline had regained movement of up to two or three joints. The uric acid-treated rats recovered to where they could support their own weight, despite having some disabilities due to the damage.

Next, the scientists want to better understand how the peroxynitrite-mediated processes actually work, which is particularly important to learning how to control immune responses in the central nervous systems of both in mice and humans. "We’re looking at various models to distinguish between peroxynitrite pathology and its effects on blood-brain barrier function," he says.

"We want to establish the precise timing where the inactivation of peroxynitrite will have therapeutic benefit," he says. "In the spinal cord, we know many of the changes occur within 24 hours. It’s certainly feasible to give someone uric acid immediately and raise levels in 50 minutes. Whether or not this should be a first-line response is unknown.

"There is a range we could work with in raising levels before there’s a problem, such as in gout," he says, referring to an ailment characterized by excessive uric acid. "We know that the human uric acid baseline is higher than that in mice, but we also know that the damage we see in the human spinal cord after injury is very similar to that seen in the mice.

"Raising uric acid levels in humans similarly to the rise we cause in the mouse should be sufficient to block peroxynitrite," Dr. Hooper says. "Our natural levels of uric acid are not sufficient. Moreover, someone with lower levels who has a spinal cord injury could definitely suffer greater damage."

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

European particle-accelerator community publishes the first industry compendium

26.04.2018 | Physics and Astronomy

Multifunctional bacterial microswimmer able to deliver cargo and destroy itself

26.04.2018 | Life Sciences

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>