Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wnt signalling protein Dishevelled acts in the nucleus, not just in the cytoplasm

15.02.2005


Researchers have identified that Dishevelled doesn’t only function in the cytoplasm and at the cell membrane – it must also pass into the nucleus. A study published today in Journal of Biology reveals that Dishevelled, a key player in the Wnt/beta-catenin signalling pathway, has to be localised in the nucleus to perform a key aspect of its function. This discovery should shed light on both normal embryonic development and the development of cancer.



In the paper, Sergei Sokol and colleagues, from Harvard Medical School, show that Dishevelled (Dsh) is constantly shuttling between the nucleus and the cytoplasm, owing to its nuclear export and import sequences, but that it has to be in the nucleus to respond to certain Wnt signals transmitted through the ‘canonical’ Wnt signalling pathway.

Dsh has always been considered to be a cytoplasmic protein, exerting its function as a stabiliser of beta-catenin in the cell cytoplasm after stimulation by Wnt secreted ligands binding to Frizzled receptors on the cell surface.


Sokol and colleagues show using Xenopus embryos and mammalian cultured cells that a mutated version of Dsh, which accumulates in the nucleus, is functional in the Wnt signalling pathway. Preventing Dsh from getting into the nucleus, however, either by mutating the nuclear localisation signal of the protein or by using a drug that disables the nuclear export machinery, impairs function. In mammalian cells, endogenous Dsh responds to Wnt ligands by mobilising to the nucleus.

“Our findings are consistent with a scenario in which Wnt signaling may cause nuclear translocation of Dsh followed by formation of a stable beta-catenin/Tcf3 complex and transcriptional activation of target genes”, explain the authors. Dsh’s exact role in the nucleus, however, is still unclear.

Dsh is also important in non-canonical Wnt signaling pathways, which involve proteins such as Rho GTPase and JNK. Sokol and colleagues show that nuclear localisation of Dsh is not required for its function in non-canonical signaling.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>