Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wnt signalling protein Dishevelled acts in the nucleus, not just in the cytoplasm


Researchers have identified that Dishevelled doesn’t only function in the cytoplasm and at the cell membrane – it must also pass into the nucleus. A study published today in Journal of Biology reveals that Dishevelled, a key player in the Wnt/beta-catenin signalling pathway, has to be localised in the nucleus to perform a key aspect of its function. This discovery should shed light on both normal embryonic development and the development of cancer.

In the paper, Sergei Sokol and colleagues, from Harvard Medical School, show that Dishevelled (Dsh) is constantly shuttling between the nucleus and the cytoplasm, owing to its nuclear export and import sequences, but that it has to be in the nucleus to respond to certain Wnt signals transmitted through the ‘canonical’ Wnt signalling pathway.

Dsh has always been considered to be a cytoplasmic protein, exerting its function as a stabiliser of beta-catenin in the cell cytoplasm after stimulation by Wnt secreted ligands binding to Frizzled receptors on the cell surface.

Sokol and colleagues show using Xenopus embryos and mammalian cultured cells that a mutated version of Dsh, which accumulates in the nucleus, is functional in the Wnt signalling pathway. Preventing Dsh from getting into the nucleus, however, either by mutating the nuclear localisation signal of the protein or by using a drug that disables the nuclear export machinery, impairs function. In mammalian cells, endogenous Dsh responds to Wnt ligands by mobilising to the nucleus.

“Our findings are consistent with a scenario in which Wnt signaling may cause nuclear translocation of Dsh followed by formation of a stable beta-catenin/Tcf3 complex and transcriptional activation of target genes”, explain the authors. Dsh’s exact role in the nucleus, however, is still unclear.

Dsh is also important in non-canonical Wnt signaling pathways, which involve proteins such as Rho GTPase and JNK. Sokol and colleagues show that nuclear localisation of Dsh is not required for its function in non-canonical signaling.

Juliette Savin | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>