Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wnt signalling protein Dishevelled acts in the nucleus, not just in the cytoplasm

15.02.2005


Researchers have identified that Dishevelled doesn’t only function in the cytoplasm and at the cell membrane – it must also pass into the nucleus. A study published today in Journal of Biology reveals that Dishevelled, a key player in the Wnt/beta-catenin signalling pathway, has to be localised in the nucleus to perform a key aspect of its function. This discovery should shed light on both normal embryonic development and the development of cancer.



In the paper, Sergei Sokol and colleagues, from Harvard Medical School, show that Dishevelled (Dsh) is constantly shuttling between the nucleus and the cytoplasm, owing to its nuclear export and import sequences, but that it has to be in the nucleus to respond to certain Wnt signals transmitted through the ‘canonical’ Wnt signalling pathway.

Dsh has always been considered to be a cytoplasmic protein, exerting its function as a stabiliser of beta-catenin in the cell cytoplasm after stimulation by Wnt secreted ligands binding to Frizzled receptors on the cell surface.


Sokol and colleagues show using Xenopus embryos and mammalian cultured cells that a mutated version of Dsh, which accumulates in the nucleus, is functional in the Wnt signalling pathway. Preventing Dsh from getting into the nucleus, however, either by mutating the nuclear localisation signal of the protein or by using a drug that disables the nuclear export machinery, impairs function. In mammalian cells, endogenous Dsh responds to Wnt ligands by mobilising to the nucleus.

“Our findings are consistent with a scenario in which Wnt signaling may cause nuclear translocation of Dsh followed by formation of a stable beta-catenin/Tcf3 complex and transcriptional activation of target genes”, explain the authors. Dsh’s exact role in the nucleus, however, is still unclear.

Dsh is also important in non-canonical Wnt signaling pathways, which involve proteins such as Rho GTPase and JNK. Sokol and colleagues show that nuclear localisation of Dsh is not required for its function in non-canonical signaling.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>