Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nano-sized probes allow Penn researchers to see tumors through flesh and skin

08.02.2005


Nano-sized particles embedded with bright, light-emitting molecules have enabled researchers to visualize a tumor more than one centimeter below the skin surface using only infrared light. A team of chemists, bioengineers and medical researchers based at the University of Pennsylvania and the University of Minnesota has lodged fluorescent materials called porphyrins within the surface of a polymersome, a cell-like vesicle, to image a tumor within a living rodent. Their findings, which represent a proof of principle for the use of emissive polymersomes to target and visualize tumors, appear in the Feb. 7 online early edition of the Proceedings of the National Academy of Science.



"We have shown that the dispersion of thousands of brightly emissive multi-porphyrin fluorophores within the polymersome membrane can be used to optically image tissue structures deep below the skin – with the potential to go even deeper," said Michael J. Therien, a professor of chemistry at Penn. "It should also be possible to use an emissive polymersome vesicle to transport therapeutics directly to a tumor, enabling us to actually see if chemotherapy is really going to its intended target."

This work takes advantage of years of effort in the Therien laboratory focused on the design of highly fluorescent compounds. Polymersomes, which were developed by Penn professors Daniel A. Hammer and Dennis Discher in the mid-1990s, function much like the bilayered membranes of living cells. Whereas cell membranes are created from a double layer of fatty phospholipid chains, a polymersome is comprised of two layers of synthetic co-polymers. Like a living cell, the polymersome membrane has a hydrophobic core. The study shows that the fluorophores evenly disperse within this core, giving rise to a nanometer-sized light-emitting structure.


"These polymers are also larger than phospholipids, so that there is enough space for the fluorophores, which are larger than the average molecule that is found inside cell membranes," said Hammer, professor and chair of the Department of Bioengineering at Penn’s School of Engineering and Applied Sciences. " Another feature that makes emissive polymersomes so useful is that they self-assemble. Simply mixing together all component parts gives rise to these functional nanometer-sized, cell-like vesicles."

In their study, the researchers demonstrate how they can use these emissive polymersomes to target markers on the surface of a specific type of tumor cells. When exposed to near-infrared light, which can travel through tissue, the fluorophores within the polymersome respond with a bright near-infrared signal that can then be detected.

"The fluorophores function like reflectors stuck in the spokes of a bicycle tire," Therien said. "When this structure absorbs light, it gives rise to an intense, localized fluorescence signal that is uniquely suited for visualizing living biological systems."

According to Therein, there is keen interest in developing new technology that will enable optical imaging of cancer tissue, as such technology will be less costly and more accessible than MRI-based methods and free of the harmful side effects associated with radioactivity. In this imaging system, the flourophores can also be tuned to respond to different wavelengths of near-infrared light. This sets the stage for using emissive polymersomes to target multiple cancer cell-surface markers in the body simultaneously.

Emissive polymersomes perform much like in vivo imaging systems that use semiconductor-based "quantum dots." These quantum dots, however, are hard matter, which could collect within the circulatory system, potentially causing a stroke. According to the Penn researchers, brightly emissive polymersomes define the first nanotech optical imaging platform based on non-aggregating "soft matter" (polymers and porphyrins) and hence have enormous potential in biomedicine.

Greg Lester | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>