Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When does a mole become a melanoma?

08.02.2005


With new model, researchers fish for answers



Researchers at Children’s Hospital Boston and the Dana-Farber Cancer Institute have found an important clue about the origins of the deadly skin cancer melanoma. Using black-and-white-striped zebrafish to model human melanoma, they showed that a specific mutation in a gene called BRAF is critical to the development of moles, and when combined with a separate mutation, leads to cancer. Their findings appear in the February 8th issue of Current Biology.

Melanoma is now an epidemic cancer: its incidence is rising faster than that of any other cancer, doubling every 10-20 years. When melanoma is metastatic, or spreads to other organs, the average life expectancy is only 6-10 months. Previous studies have indicated that the BRAF gene is mutated in about 75 percent of melanomas, but until this study, no one knew its role, if any, in causing the cancer.


Dr. Leonard Zon, a Howard Hughes Medical Institute investigator in the Children’s/Dana-Farber Division of Hematology/Oncology, postdoctoral fellow Dr. Elizabeth Patton, and colleagues genetically engineered zebrafish to make the mutated form of human BRAF. The mutant fish developed black-pigmented moles on their skin, but none developed melanoma. When the fish were also made to be deficient for a gene called p53, which suppresses tumor growth, the moles developed into invasive melanomas resembling human cancers. When cells from these tumors were injected into healthy zebrafish, they too developed melanomas. "We now know that BRAF, when activated, is sufficient to make moles," says Zon. "We also know that it’s insufficient to make cancer – you need other mutations, like a deficiency in the p53 tumor suppressor gene, to get melanoma."

Other animal models of melanoma exist, but the zebrafish is an exceptionally good one: its genome is very similar to the human genome and has been fully sequenced, so all its genes are known. The zebrafish is also very easy to study -- females have 300 babies a week, allowing scientists to very quickly create genetic variations and see the results. In fact, tumors are readily visible in zebrafish, allowing researchers to watch them progress. The fish can also be made to display the effects of gene mutations visually through genetic tricks that make the affected cells and tissues fluoresce. "The visual nature of the fish makes it an attractive model for studying cancer," adds Zon. "We can track a cancer and follow the fate of individual cells as the tumor grows and spreads." Now that the zebrafish model has been created, Zon’s team will use it to examine how melanomas metastasize, and to look for other gene mutations besides the p53 mutation that participate in transforming moles into malignant melanomas. "Some of these genes may lead us to excellent pharmaceutical targets for treatment of melanomas," Zon says.

Once these targets are identified, the zebrafish can be used to test potential anti-melanoma drugs that hit the targets. Researchers will also be able to test the effects of risk factors for human melanoma, such as exposure to ultraviolet radiation, and how they interact with gene mutations to cause disease.

Finally, Zon, who also directs the Children’s Hospital Boston Stem Cell Program, will use the fish to learn more about cancer stem cells. Most tumor cells, when transplanted, can’t give rise to a new cancer because they lack the capacity to divide and multiply. But tumors often have a subgroup of cells that can self-renew, as stem cells do, and create a new cancer -- as seen in these melanoma experiments. Studying these cells may turn up genes involved in metastasis, for example. "We’re hoping to look at cancer as a stem cell problem," says Zon.

Mary-Ellen Shay | EurekAlert!
Further information:
http://www.childrens.harvard.edu
http://www.childrenshospital.org/research/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>