Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature births from inflammation and infection rapidly detected by proteomics technology

07.02.2005


A combination of four proteins that result from inflammation and infection and lead to premature birth can be rapidly and accurately detected in the amniotic fluid of pregnant women using proteomics technology, Yale researchers report in two studies in the February issue of British Journal of Obstetrics and Gynecology.



Using proteomics science, the Yale team, in collaboration with two other academic institutions, developed a novel method called MR scoring to discriminate healthy from diseased women in whom preterm delivery is impending and the health of the fetus is in danger. MR scoring relies on identification of a group of proteins that serve as biomarkers characteristic to women who will deliver preterm. The proteins detected are Human neutrophil defensin 1, Human neutrophil defensin 2, Calgranulin C and Calgranulin A.

"We are probably at a turning point in the history of preterm labor diagnosis," said Irina Buhimschi, M.D., research scientist in the Department of Obstetrics & Gynecology and Reproductive Sciences. "While many proteins are present in the amniotic fluid, not all are biomarkers with diagnostic significance."


About 50 percent of women who deliver prematurely have evidence of inflammation in the amniotic fluid. In the current study, Buhimschi and co-authors analyzed stored samples of amniotic fluid from 107 women, some diagnosed with rupture of the membranes or twins and eventually delivered prematurely. The sensitivity and specificity of the MR score in identifying women who had infection and inflammation and delivered earlier reached 100 percent. The four biomarkers are necessary and sufficient to separate between sick and healthy patients.

Buhimschi said the current "gold standard" for infection consists of amniotic fluid culture, which takes days to obtain results. A proteomic diagnostic test for infection and inflammation could probably be performed much faster than the current available laboratory tests. Other current tests have poor sensitivity and specificity and are not available in time for rapid clinical decisions.

The team will present another clinical application of their research (cervical incompetence) during the Plenary Session in February at the 2005 Annual Meeting of the Society for Maternal Fetal Medicine in Reno, Nevada. Other authors include Catalin Buhimschi, M.D. of Yale, Rob Christner of Ciphergen Biosystems and Carl P. Weiner of University of Maryland. The study was funded by the National Institutes of Health and Ciphergen Biosystems.

Karen N. Peart | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>