Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling protein diversity

04.02.2005


Proteins called coactivators control the process by which a single gene can initiate production of several proteins in a process called alternative splicing, said Baylor College of Medicine researchers in a report that appears in today’s issue of the journal Molecular Cell. "A major question in biology today is how human cells with 30,000 genes produce at least 120,000 proteins," said Dr. Bert O’Malley, chair of the BCM department of molecular and cellular biology. The answer is a process called alternative splicing in which certain information from a gene is left out or included, changing the format of the resulting protein.



In other words, if the information in a gene is like the elements of a computer code, leaving out some of the code results in a very different program than what would have resulted if all the components had been included or different parts had been left out. In this instance, leaving out part of the gene changes the protein.

"The question is, ’How is this controlled?’" said O’Malley.


He and his colleagues have shown in previous studies that hormones like estrogen and progesterone can change the amounts of proteins made by their target genes. When hormone binds to receptors inside the cells, they are activated to seek out target genes. They then recruit the coactivators – in this case CAPERá and CAPERâ. These coactivators not only cause the gene to begin the process that results in protein production, they also determine what kind of RNA (a kind of genetic template for the protein) is made as well as what kind of protein results.

"This subgroup of coactivators, when brought to the gene, can enhance the amount of RNA made off the gene or the quantitative expression of that gene as well as qualitatively change what comes off the gene in terms of what protein is made," said O’Malley. These coactivators are unusual in that they can both control alternative splicing that results in different proteins being made as well as the production of RNA.

Kimberlee Barbour | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>