Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling protein diversity

04.02.2005


Proteins called coactivators control the process by which a single gene can initiate production of several proteins in a process called alternative splicing, said Baylor College of Medicine researchers in a report that appears in today’s issue of the journal Molecular Cell. "A major question in biology today is how human cells with 30,000 genes produce at least 120,000 proteins," said Dr. Bert O’Malley, chair of the BCM department of molecular and cellular biology. The answer is a process called alternative splicing in which certain information from a gene is left out or included, changing the format of the resulting protein.



In other words, if the information in a gene is like the elements of a computer code, leaving out some of the code results in a very different program than what would have resulted if all the components had been included or different parts had been left out. In this instance, leaving out part of the gene changes the protein.

"The question is, ’How is this controlled?’" said O’Malley.


He and his colleagues have shown in previous studies that hormones like estrogen and progesterone can change the amounts of proteins made by their target genes. When hormone binds to receptors inside the cells, they are activated to seek out target genes. They then recruit the coactivators – in this case CAPERá and CAPERâ. These coactivators not only cause the gene to begin the process that results in protein production, they also determine what kind of RNA (a kind of genetic template for the protein) is made as well as what kind of protein results.

"This subgroup of coactivators, when brought to the gene, can enhance the amount of RNA made off the gene or the quantitative expression of that gene as well as qualitatively change what comes off the gene in terms of what protein is made," said O’Malley. These coactivators are unusual in that they can both control alternative splicing that results in different proteins being made as well as the production of RNA.

Kimberlee Barbour | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>