Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Controlling protein diversity


Proteins called coactivators control the process by which a single gene can initiate production of several proteins in a process called alternative splicing, said Baylor College of Medicine researchers in a report that appears in today’s issue of the journal Molecular Cell. "A major question in biology today is how human cells with 30,000 genes produce at least 120,000 proteins," said Dr. Bert O’Malley, chair of the BCM department of molecular and cellular biology. The answer is a process called alternative splicing in which certain information from a gene is left out or included, changing the format of the resulting protein.

In other words, if the information in a gene is like the elements of a computer code, leaving out some of the code results in a very different program than what would have resulted if all the components had been included or different parts had been left out. In this instance, leaving out part of the gene changes the protein.

"The question is, ’How is this controlled?’" said O’Malley.

He and his colleagues have shown in previous studies that hormones like estrogen and progesterone can change the amounts of proteins made by their target genes. When hormone binds to receptors inside the cells, they are activated to seek out target genes. They then recruit the coactivators – in this case CAPERá and CAPERâ. These coactivators not only cause the gene to begin the process that results in protein production, they also determine what kind of RNA (a kind of genetic template for the protein) is made as well as what kind of protein results.

"This subgroup of coactivators, when brought to the gene, can enhance the amount of RNA made off the gene or the quantitative expression of that gene as well as qualitatively change what comes off the gene in terms of what protein is made," said O’Malley. These coactivators are unusual in that they can both control alternative splicing that results in different proteins being made as well as the production of RNA.

Kimberlee Barbour | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>