Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel approach yields predictions validated by experiments

27.01.2005


Coming full circle has new meaning for researchers who demonstrated a promising new approach integrating scientific experimentation and mathematical modeling to study a key signaling pathway that helps cells decide whether to grow or die.



With implications for disease characterization, biotechnology and drug design, the approach tested by researchers at the Medical University of South Carolina (MUSC) and the Georgia Institute of Technology offers an efficient way of gaining useful knowledge from the massive amounts of complex biological information generated with today’s advanced analysis technology.

The work represents another step toward modeling complex biological systems accurately enough to make useful predictions. "Our research went beyond describing a one-way street," said Professor Eberhard Voit of the Georgia Tech/Emory University Wallace H. Coulter Department of Biomedical Engineering. "Experimenters generate data, modelers design a mathematical model that fits the data, and often that’s the end of the story. But, in this research, the experimenters actually tested hypotheses generated by the model, thus closing the circle."


Voit -- also a Georgia Research Alliance Eminent Scholar with expertise in mathematical and computational modeling -- reports this research with his MUSC colleagues in the Jan. 27, 2005 issue of the journal Nature. The researchers demonstrated their scientific approach within the context of sphingolipid metabolism in yeast. Sphingolipids are signaling molecules that assist cells in deciding whether to grow or die. Research has shown these molecules have implications in preventing several types of cancer in animal models. "We amassed an incredible amount of data from the literature and the lab on this particular metabolic pathway and integrated it all into one functioning entity -- the mathematical model," Voit explained. "This model now allows us to test ’what-if’ scenarios and make predictions on experiments that have not been performed or that are very difficult, or impossible, to perform."

The research was funded by the National Institutes of Health and largely completed at MUSC, where Voit was a professor before joining the Georgia Tech faculty this past fall. Voit is continuing this research in his new position. His co-authors on the Nature paper are Yusuf Hannun, professor and chair of the MUSC Department of Biochemistry and Molecular Biology, MUSC postdoctoral researchers Fernando Alvarez-Vasquez and Ashley Cowart, MUSC graduate student Kellie Sims and former MUSC postdoctoral fellow Yasuo Okamoto.

The Nature paper represents a very early stage in the necessary process of developing more sophisticated models, Voit said. Though the paper focused on modeling sphingolipid metabolism in yeast, it represents a good starting point for modeling this pathway in humans because of similarities in the process, he added. He plans to collaborate on developing such a model with Georgia Tech Professor of Biology Alfred Merrill, whose research focuses on human sphingolipids.

In the current study, Voit and his co-authors tested their model to determine the degree to which its predictions were accurate. "Qualitatively, all of our predictions were correct," Voit said. "If we predicted an increase in something, the experiments showed a similar increase. Quantitatively, our predictions need to be refined further. If we had a human model of the current quality, we would still not be able, for instance, to predict with sufficient reliability the drug dosage needed for treating a specific disease process." The researchers plan to refine their model with additional mathematical methods and then create new hypotheses for experimenters to test. "We’ll be able to compute mathematically the points in the system that are most crucial to test because they are most sensitive to change," Voit explained. "Eventually, we’ll have a metabolic model of the yeast cell. Then, for example, we might be able to apply it in biotechnology to yeast strains that are better producers of industrial alcohol or methanol as fuel for cars."

Voit emphasized that mathematical modeling of whole cells – the Holy Grail in his field -- is a highly complex task because of the huge amounts of data necessary and the multitude of possible biological system responses that must be considered.

He compares the complexity of this task to an aerial view of a busy city with many people, cars, energy, and information moving around. "You want to capture all of that activity, but you have incomplete information," Voit explained. "You can’t ask who just called whom and why, or where all these people and cars are going."

Addressing this complexity necessitates the use of advanced mathematical equations based upon biochemical systems theory to describe dynamic biological processes, Void said. These processes include feedback mechanisms that work to stabilize a system much like a thermostat maintains a constant temperature.

Such mathematical models could help characterize diseases in which a system is unable to return to its normal state, is set to a wrong state (e.g., glucose fluctuations in diabetes) or a control is missing, such as the proliferation of cells in cancer, or the absence of an enzyme that results in an inherited metabolic disease, Voit explained.

Another application for mathematical models is drug design. Researchers could use models to find optimal points in a metabolic pathway for drug intervention that would achieve desired treatment results with minimal side effects, Voit said.

"The real Holy Grail will be a theory of biology that allows us to make solid predictions," Voit said. "We biologists are always envious of the physicists because they have all sorts of theories. But biology is so much more complicated. We’re on our way there, and we’re looking for biological design principles we can test mathematically…. Then we’ll be a step closer to a theory of biology."

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>