Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful X-ray beams at Argonne, new electronic flight simulator

20.01.2005


Watching flies fly may not seem like high-tech science, but for researchers using the Western Hemisphere’s most brilliant X-rays, located at the Advanced Photon Source at the U.S. Department of Energy’s Argonne National Laboratory, it not only helps explain how insects fly but also may someday aid in understanding human heart function.



The researchers, from the Illinois Institute of Technology (IIT), Caltech and the University of Vermont, merged two distinct technologies, intense X-ray beams and electronic flight simulators, to study how insect muscles can generate such extraordinary levels of power. The results are published in the British journal Nature today.

Lead researcher Tom Irving of IIT said that the research has widespread implications. “Flying insects are among the most successful species in the animal kingdom. The ways in which the wing muscles in these insects generate enough power for flight is not completely understood. Insect muscles differ from animal muscles in that they do not need a nerve impulse for every contraction but instead are activated by stretch. The means by which these ‘stretch-activated muscles’ are turned on and off at high speed — one wing beat takes 5/1000th of a second — has been a mystery.”


The team used extremely bright beams of X-rays at the BioCAT facility (a NIH- supported research center developed by IIT) at the APS and a “virtual-reality flight simulator” for flies — designed by collaborator Michael Dickinson of Caltech — to probe to the muscles in a flying fruit fly.

The intense X-rays are necessary to resolve the changes in the crystal-like configuration of molecules responsible for generating the rapid contractions of the muscle with a resolution of 6/10,0000th of a second. The flight simulator, which fools a tethered fly into “thinking” it is flying freely through the air, is necessary to produce a stable pattern of wing motion and enabled the researchers to capture X-ray images at different stages of muscle contraction.

By combining the technologies, the researchers could reconstruct a “movie” of the molecular changes in the powerful muscles as they lengthen and shorten to drive the wings back and forth 200 times each second. These experiments uncovered previously unsuspected interactions of various proteins as the muscles stretch and contract that suggest a model for how these powerful biological motors turn “on” and “off” during the wingbeat. “We are now in a position to relate muscle power output to changes in molecular structure," Irving said, "which helps us understand how insects generate enough power to support flight.”

Dickinson and collaborator David Maughan of the University of Vermont note the fact that these experiments are performed on tiny, genetically malleable fruit flies raises the possibility of addressing much more specific questions concerning the roles of various protein components in muscle function using mutant or genetically engineered flies.

The authors note that the many similarities between insect muscle and other oscillatory muscles, including human cardiac muscle, mean that the research may be adaptable for other uses. “The data collected in these experiments," Irving said, "suggest new ways to study cardiac muscle that may allow us to explain how changes in its molecular machinery determine heart muscle performance. The fact that flight muscles are genetically mutable by the investigators raise the possibility they could serve as useful models of inherited human heart disease.”

Other collaborators on the research were Gerrie Farman, Tanya Bekyarova and David Gore of IIT, and Mark Frye of Caltech.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>