Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful X-ray beams at Argonne, new electronic flight simulator

20.01.2005


Watching flies fly may not seem like high-tech science, but for researchers using the Western Hemisphere’s most brilliant X-rays, located at the Advanced Photon Source at the U.S. Department of Energy’s Argonne National Laboratory, it not only helps explain how insects fly but also may someday aid in understanding human heart function.



The researchers, from the Illinois Institute of Technology (IIT), Caltech and the University of Vermont, merged two distinct technologies, intense X-ray beams and electronic flight simulators, to study how insect muscles can generate such extraordinary levels of power. The results are published in the British journal Nature today.

Lead researcher Tom Irving of IIT said that the research has widespread implications. “Flying insects are among the most successful species in the animal kingdom. The ways in which the wing muscles in these insects generate enough power for flight is not completely understood. Insect muscles differ from animal muscles in that they do not need a nerve impulse for every contraction but instead are activated by stretch. The means by which these ‘stretch-activated muscles’ are turned on and off at high speed — one wing beat takes 5/1000th of a second — has been a mystery.”


The team used extremely bright beams of X-rays at the BioCAT facility (a NIH- supported research center developed by IIT) at the APS and a “virtual-reality flight simulator” for flies — designed by collaborator Michael Dickinson of Caltech — to probe to the muscles in a flying fruit fly.

The intense X-rays are necessary to resolve the changes in the crystal-like configuration of molecules responsible for generating the rapid contractions of the muscle with a resolution of 6/10,0000th of a second. The flight simulator, which fools a tethered fly into “thinking” it is flying freely through the air, is necessary to produce a stable pattern of wing motion and enabled the researchers to capture X-ray images at different stages of muscle contraction.

By combining the technologies, the researchers could reconstruct a “movie” of the molecular changes in the powerful muscles as they lengthen and shorten to drive the wings back and forth 200 times each second. These experiments uncovered previously unsuspected interactions of various proteins as the muscles stretch and contract that suggest a model for how these powerful biological motors turn “on” and “off” during the wingbeat. “We are now in a position to relate muscle power output to changes in molecular structure," Irving said, "which helps us understand how insects generate enough power to support flight.”

Dickinson and collaborator David Maughan of the University of Vermont note the fact that these experiments are performed on tiny, genetically malleable fruit flies raises the possibility of addressing much more specific questions concerning the roles of various protein components in muscle function using mutant or genetically engineered flies.

The authors note that the many similarities between insect muscle and other oscillatory muscles, including human cardiac muscle, mean that the research may be adaptable for other uses. “The data collected in these experiments," Irving said, "suggest new ways to study cardiac muscle that may allow us to explain how changes in its molecular machinery determine heart muscle performance. The fact that flight muscles are genetically mutable by the investigators raise the possibility they could serve as useful models of inherited human heart disease.”

Other collaborators on the research were Gerrie Farman, Tanya Bekyarova and David Gore of IIT, and Mark Frye of Caltech.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

Catherine Foster | EurekAlert!
Further information:
http://www.anl.gov

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>