Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Morse code for human cells

11.01.2005


Morse code is a simple, effective and clear method of communication and now scientists believe that cells in our body may also be using patterns of signals to switch genes on and off. The discovery may have major implications for the pharmaceutical industry as the signalling molecules that are targeted by drugs may have more than one purpose. The number of ‘dots and dashes’ being used by each signal could have different purposes, all of which could be modified by a drug.



The researchers, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working at the Universities of Liverpool and Manchester and the Royal Liverpool Children’s Hospital, in collaboration with scientists at AstraZeneca and Pfizer, have studied transcription factors, the signalling molecules inside cells that activate or deactivate genes. They found that the strength of the signal is less important than the dynamic frequency pattern that is used.

Professor Michael White of the Centre for Cell Imaging at Liverpool and leader of the research group said, “The timing of the repeating signal is essential for its interpretation. It seems that cells may read the oscillations in level of transcription factors in a similar way to Morse code.”


The researchers focused on the response of a transcription factor involved in controlling the crucial processes of cell division and cell death. They found that the dynamics of the signalling molecule resemble the changes in calcium levels that encode other messages in cells. The results suggest how common signalling molecules could convey different messages through different frequencies.

Professor Douglas Kell, who sits on BBSRC Council and is a member of the research team, said, “This raises new challenges for drug designers. It appears that simply aiming to knock down signalling molecules with drugs, as many people are trying to do, may have weak or even undesirable effects as a range of signals could be cancelled out. It is going to be important in the future to decode the Morse-like messages from the molecules to make sure that only the desired effects are blocked.”

Professor Julia Goodfellow, BBSRC Chief Executive, said, “This research is an example of a multi-disciplinary approach producing vitally important results. By combining expertise in cell biology, chemistry, mathematical modelling and bio-imaging the research team have discovered this coded signal that is going to inform the development of better, more effective drugs.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>