Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mutations in transporter protein shed light on neurodegenerative disorders


Researchers at Stanford University have made new discoveries that shed light on two inherited neurodegenerative disorders that are caused by inability of the body to transport sialic acid out of cellular compartments. The findings focus on how different mutations in one transporter molecule can cause a wide spectrum of symptoms in Salla Disease and infantile sialic acid storage disease (ISSD).

The research appears as the "Paper of the Week" in the January 14 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

The free sialic acid storage diseases are a range of rare, autosomal recessive, neurodegenerative disorders that result from the accumulation of sialic acid within lysosomes. There are two forms of the disease--Salla Disease, the milder form, and the more severe infantile sialic acid storage disease (ISSD). "Clinically, these diseases consist of a spectrum," notes Dr. Richard J. Reimer of Stanford University. "In the severe phenotype infants are born with dysmorphic features, enlarged internal organs and die within a few months. With the milder disease the affected individuals have physical and mental developmental delay, but can live to adulthood."

In Salla Disease and ISSD, the amino sugar sialic acid accumulates in lysosomes, the cellular compartments that are responsible for degrading macromolecules. "Sialic acid is part of a number of proteins and normally it is removed from proteins as they are degraded in lysosomes," explains Dr. Reimer. "The free sialic acid is then released into the cytoplasm of the cell so that it can be reincorporated in to newly synthesized proteins. In Salla Disease and ISSD, the sialic acid is removed from the protein, but it is not released from the lysosome."

Genetic studies have shown that mutations in a single gene encoding a protein called sialin are responsible for both diseases. "The milder form is associated with a single mutation and is most common in a region in northern Finland," says Dr. Reimer. "The more severe form does not appear to have a regional or ethnic predilection and can be caused by any of several different mutations. To date a total of 18 mutations have been identified in addition to the Finnish mutation."

To better understand how mutations in sialin cause the two diseases, Dr. Reimer and his colleagues at Stanford altered part of the sialin molecule, causing it to be expressed on the surface of cells rather than inside lysosomes. In doing this, the researchers were able to easily compare the sialic acid transport ability of normal versus mutated versions of sialin. Using this approach, they proved that sialin is responsible for transporting sialic acid out of the lysosome.

Dr. Reimer and his colleagues also evaluated the impact of sialin’s identified mutations on sialic acid export and discovered a direct correlation between the degree of transport activity lost and the severity of the clinical phenotype. "In the more common and milder form of the disease we found that the mutant proteins work, but not as well. Our findings suggest that for the milder form of the disease a functional protein is still produced, but with reduced activity. From the work of others we know that carriers are asymptomatic even with a 50 percent reduction in sialic acid transport activity. This suggests that for the milder form of the disease increasing the level of expression or stability of the protein could be one way to treat the disease," concludes Dr. Reimer.

Nicole Kresge | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>