Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of cancer syndrome could lead to treatments

05.01.2005


Scientists from MIT’s Center for Cancer Research have developed a new mouse model that closely resembles Li-Fraumeni Syndrome (LFS) in humans, a syndrome that predisposes those affected to a broad range of cancers. Some 95 percent of LFS patients develop cancer by age 65.



This work, which was reported in the Dec. 17 issue of Cell, could lead to a treatment for LFS and aid in the development of treatments for other cancers.

The research shows that a single point mutation in the tumor suppressor gene p53 yields a mouse that develops a broad tumor spectrum reminiscent of LFS. Although LFS is a rare genetic disease, affecting fewer than 400 families worldwide, the p53 gene is very commonly mutated in tumors unrelated to LFS. Mutations in p53 are detected in more than 50 percent of all human tumors, such as colon, breast, skin, bladder and many cancers of the digestive tract. Consequently, the development of a therapy for LFS specifically targeted at p53 has the potential to be applied to a wide range of cancers.


"The LFS mouse strains, which have been many years in the making, will be extremely valuable in understanding how the common mutations in p53 contribute to tumor formation," said Tyler Jacks, David H. Koch professor of biology, director of the Center for Cancer Research and leader of the MIT team. "We expect these strains will also help us determine how to specifically treat p53 mutant tumors," explained Jacks, who is also an Investigator for the Howard Hughes Medical Institute.

Understanding the genetic basis of disease is the key to developing effective therapies in the fight against cancer, and mouse models of human cancer have played an integral role in research. However, previous attempts to create accurate mouse models of LFS by completely inactivating p53 were unsuccessful because the mice did not develop the wide range of tumors seen in human LFS patients.

In this study, two different mutations in p53 that are commonly found in human tumors were tested in the mouse. These mutations do not lead to deletion of p53, but have more subtle effects. The authors found that mice that possessed either of the two mutations in p53 developed more tumors and more different types of tumors than do mice completely lacking p53.

"By knocking out p53, the mice did not develop as many types of tumors as is typically seen with LFS," said Kenneth Olive, lead author of the paper and a graduate student in biology. "Therefore, it is important that we understand what it is about these subtle mutations that is different from simply inactivating the whole gene. More generally, if we are to truly understand human cancer, it is important that we study not just any mutation, but the right mutation."

Other MIT authors of the paper are David Tuveson, now an assistant professor at the University of Pennsylvania, biology undergraduates Zachary Ruhe and Bob Yin, and former research technician Nicholas Willis and research affiliate Denise Crowley of the Center for Cancer Research. Roderick Bronson of Tufts University School of Veterinary Medicine also contributed to this work.

The work is supported by the Howard Hughes Medical Institute and the National Cancer Institute Mouse Models of Human Cancer Consortium. Support also comes from a Koch Graduate Fellowship and a National Institutes of Health Training Grant.

Elizabeth Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>