Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New clues to the genetic of epilepsy


Two specific areas in chromosome 7 and chromosome 16 have been associated with photosensitivity, an epilepsy-related trait, by a team of European scientists in the January issue of Human Molecular Genetics. Photosensitivity or photoparoxysmal response (PPR) is associated with the most common epilepsy of genetic origin –Idiopathic Generalised Epilepsy (IGE) - and comprehension of the genetics behind it is important to a better understanding of IGE and epilepsy in general.

Epilepsies are a group of brain disorders characterised by recurrent seizures. The disease results from the fact that the neurons (brain cells) of epileptic patients seem to be incapable of properly conduct the nervous signal. This inability leads to excessive and disordered electric activity in the patients’ brain, which can lead to seizures. Seizures trigger involuntary muscle movements and can have a multitude of effects such as altered sensations, changes in awareness, behaviour, movement and/or body function.

Epilepsy affects about 2% of the world population and can create problems in the simplest of everyday activities such as driving, attending a job, school or even staying home alone what has important economic implications for society. Additionally, due to the unpredictability of the seizures that creates a life of constant fear for patients, there is also a extremely high social toll for both patients and their families.

Although treatments, including surgery, are available, for about a third of patients seizures cannot be controlled and new more effective therapies are necessary. In fact, a problem with epilepsy is its multiple causes and consequently the need for different treatments. Disease causes range from abnormal brain development, drug and alcohol abuse, tumours, head trauma or strokes to, in about half of the total cases, defective genes. In this last case, recent advances in the understanding of the human genome have helped to identify genes that can, when altered, lead to disruption of neurons’ normal function and so predispose to epilepsy but much is still unknown.

One example is IGE that accounts for about 40% of all epilepsy cases, being the most common variant of the disease. IGE has a complex genetic origin with several interacting predisposing genes and although investigations on its genetic causes have been done, so far, all studies have proven inconclusive.

Dalila Pinto, Kasteleijn-Nolst Trenité, Bobby P.C. Koeleman and colleagues at University Medical Centre Utrecht and the Epilepsy Institute of the Netherlands in the Netherlands, the Hôpitaux Universitaires de Strasbourg in France and the Institute of Biomedical Sciences Abel Salazar in Portugal decided to approach the study of IGE’s genetic complexity in a different form. The team of researchers choose to study only one of the traits associated and believed to contribute to the disease –photosensitivity – and from this information start constructing the big genetic picture behind IGE.

Photosensitivity or photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in response to flickering lights, which, from families and twin studies, is believed to have a genetic origin. PPR appears associated with many idiopathic (of genetic origin) epilepsies, and, at least with IGE, is suspected to be involved in the disease’s mechanism. PPR has the additional advantage of be monitored with an electrocardiogram machine in clinic and so sufferers are objectively identified without the need to rely on clinical symptoms.

Pinto, Trenité, Koeleman and colleagues, using a technique called “genome wide linkage scan” studied sixteen Dutch and French families suffering from a PPR-associated epilepsy, in a total of one hundred and five individuals. The technique consists in the use of several markers, with known localisation in the DNA, to identify/locate the areas in the chromosomes which are conserved among patients and so probably contain the gene or genes associated with disease.

The team of researchers found that chromosome 7 band (or region) 32 and chromosome 16 band 13 were associated with PPR. This result suggests that genes involved in photosensitivity, and consequently with susceptibility to PPR-associated epilepsies, are localised in these areas. Further research is now on the way in order to precisely identify these genes.

Pinto, Trenité, Koeleman and colleagues’ work is very important; by contributing for the identification of susceptibility genes for an epilepsy-related trait their research helps to understand the mechanisms behind epilepsy and ultimately to find better treatment strategies, helping patients to have a better quality of life and maybe one day have the possibility of cure.

Piece researched and written by: Catarina Amorim

Catarina Amorim | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>