Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to the genetic of epilepsy

05.01.2005


Two specific areas in chromosome 7 and chromosome 16 have been associated with photosensitivity, an epilepsy-related trait, by a team of European scientists in the January issue of Human Molecular Genetics. Photosensitivity or photoparoxysmal response (PPR) is associated with the most common epilepsy of genetic origin –Idiopathic Generalised Epilepsy (IGE) - and comprehension of the genetics behind it is important to a better understanding of IGE and epilepsy in general.

Epilepsies are a group of brain disorders characterised by recurrent seizures. The disease results from the fact that the neurons (brain cells) of epileptic patients seem to be incapable of properly conduct the nervous signal. This inability leads to excessive and disordered electric activity in the patients’ brain, which can lead to seizures. Seizures trigger involuntary muscle movements and can have a multitude of effects such as altered sensations, changes in awareness, behaviour, movement and/or body function.

Epilepsy affects about 2% of the world population and can create problems in the simplest of everyday activities such as driving, attending a job, school or even staying home alone what has important economic implications for society. Additionally, due to the unpredictability of the seizures that creates a life of constant fear for patients, there is also a extremely high social toll for both patients and their families.



Although treatments, including surgery, are available, for about a third of patients seizures cannot be controlled and new more effective therapies are necessary. In fact, a problem with epilepsy is its multiple causes and consequently the need for different treatments. Disease causes range from abnormal brain development, drug and alcohol abuse, tumours, head trauma or strokes to, in about half of the total cases, defective genes. In this last case, recent advances in the understanding of the human genome have helped to identify genes that can, when altered, lead to disruption of neurons’ normal function and so predispose to epilepsy but much is still unknown.

One example is IGE that accounts for about 40% of all epilepsy cases, being the most common variant of the disease. IGE has a complex genetic origin with several interacting predisposing genes and although investigations on its genetic causes have been done, so far, all studies have proven inconclusive.

Dalila Pinto, Kasteleijn-Nolst Trenité, Bobby P.C. Koeleman and colleagues at University Medical Centre Utrecht and the Epilepsy Institute of the Netherlands in the Netherlands, the Hôpitaux Universitaires de Strasbourg in France and the Institute of Biomedical Sciences Abel Salazar in Portugal decided to approach the study of IGE’s genetic complexity in a different form. The team of researchers choose to study only one of the traits associated and believed to contribute to the disease –photosensitivity – and from this information start constructing the big genetic picture behind IGE.

Photosensitivity or photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in response to flickering lights, which, from families and twin studies, is believed to have a genetic origin. PPR appears associated with many idiopathic (of genetic origin) epilepsies, and, at least with IGE, is suspected to be involved in the disease’s mechanism. PPR has the additional advantage of be monitored with an electrocardiogram machine in clinic and so sufferers are objectively identified without the need to rely on clinical symptoms.

Pinto, Trenité, Koeleman and colleagues, using a technique called “genome wide linkage scan” studied sixteen Dutch and French families suffering from a PPR-associated epilepsy, in a total of one hundred and five individuals. The technique consists in the use of several markers, with known localisation in the DNA, to identify/locate the areas in the chromosomes which are conserved among patients and so probably contain the gene or genes associated with disease.

The team of researchers found that chromosome 7 band (or region) 32 and chromosome 16 band 13 were associated with PPR. This result suggests that genes involved in photosensitivity, and consequently with susceptibility to PPR-associated epilepsies, are localised in these areas. Further research is now on the way in order to precisely identify these genes.

Pinto, Trenité, Koeleman and colleagues’ work is very important; by contributing for the identification of susceptibility genes for an epilepsy-related trait their research helps to understand the mechanisms behind epilepsy and ultimately to find better treatment strategies, helping patients to have a better quality of life and maybe one day have the possibility of cure.

Piece researched and written by: Catarina Amorim
(catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://hmg.oupjournals.org/cgi/content/abstract/14/1/171?ct

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>