Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to the genetic of epilepsy

05.01.2005


Two specific areas in chromosome 7 and chromosome 16 have been associated with photosensitivity, an epilepsy-related trait, by a team of European scientists in the January issue of Human Molecular Genetics. Photosensitivity or photoparoxysmal response (PPR) is associated with the most common epilepsy of genetic origin –Idiopathic Generalised Epilepsy (IGE) - and comprehension of the genetics behind it is important to a better understanding of IGE and epilepsy in general.

Epilepsies are a group of brain disorders characterised by recurrent seizures. The disease results from the fact that the neurons (brain cells) of epileptic patients seem to be incapable of properly conduct the nervous signal. This inability leads to excessive and disordered electric activity in the patients’ brain, which can lead to seizures. Seizures trigger involuntary muscle movements and can have a multitude of effects such as altered sensations, changes in awareness, behaviour, movement and/or body function.

Epilepsy affects about 2% of the world population and can create problems in the simplest of everyday activities such as driving, attending a job, school or even staying home alone what has important economic implications for society. Additionally, due to the unpredictability of the seizures that creates a life of constant fear for patients, there is also a extremely high social toll for both patients and their families.



Although treatments, including surgery, are available, for about a third of patients seizures cannot be controlled and new more effective therapies are necessary. In fact, a problem with epilepsy is its multiple causes and consequently the need for different treatments. Disease causes range from abnormal brain development, drug and alcohol abuse, tumours, head trauma or strokes to, in about half of the total cases, defective genes. In this last case, recent advances in the understanding of the human genome have helped to identify genes that can, when altered, lead to disruption of neurons’ normal function and so predispose to epilepsy but much is still unknown.

One example is IGE that accounts for about 40% of all epilepsy cases, being the most common variant of the disease. IGE has a complex genetic origin with several interacting predisposing genes and although investigations on its genetic causes have been done, so far, all studies have proven inconclusive.

Dalila Pinto, Kasteleijn-Nolst Trenité, Bobby P.C. Koeleman and colleagues at University Medical Centre Utrecht and the Epilepsy Institute of the Netherlands in the Netherlands, the Hôpitaux Universitaires de Strasbourg in France and the Institute of Biomedical Sciences Abel Salazar in Portugal decided to approach the study of IGE’s genetic complexity in a different form. The team of researchers choose to study only one of the traits associated and believed to contribute to the disease –photosensitivity – and from this information start constructing the big genetic picture behind IGE.

Photosensitivity or photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in response to flickering lights, which, from families and twin studies, is believed to have a genetic origin. PPR appears associated with many idiopathic (of genetic origin) epilepsies, and, at least with IGE, is suspected to be involved in the disease’s mechanism. PPR has the additional advantage of be monitored with an electrocardiogram machine in clinic and so sufferers are objectively identified without the need to rely on clinical symptoms.

Pinto, Trenité, Koeleman and colleagues, using a technique called “genome wide linkage scan” studied sixteen Dutch and French families suffering from a PPR-associated epilepsy, in a total of one hundred and five individuals. The technique consists in the use of several markers, with known localisation in the DNA, to identify/locate the areas in the chromosomes which are conserved among patients and so probably contain the gene or genes associated with disease.

The team of researchers found that chromosome 7 band (or region) 32 and chromosome 16 band 13 were associated with PPR. This result suggests that genes involved in photosensitivity, and consequently with susceptibility to PPR-associated epilepsies, are localised in these areas. Further research is now on the way in order to precisely identify these genes.

Pinto, Trenité, Koeleman and colleagues’ work is very important; by contributing for the identification of susceptibility genes for an epilepsy-related trait their research helps to understand the mechanisms behind epilepsy and ultimately to find better treatment strategies, helping patients to have a better quality of life and maybe one day have the possibility of cure.

Piece researched and written by: Catarina Amorim
(catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://hmg.oupjournals.org/cgi/content/abstract/14/1/171?ct

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>