Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to the genetic of epilepsy

05.01.2005


Two specific areas in chromosome 7 and chromosome 16 have been associated with photosensitivity, an epilepsy-related trait, by a team of European scientists in the January issue of Human Molecular Genetics. Photosensitivity or photoparoxysmal response (PPR) is associated with the most common epilepsy of genetic origin –Idiopathic Generalised Epilepsy (IGE) - and comprehension of the genetics behind it is important to a better understanding of IGE and epilepsy in general.

Epilepsies are a group of brain disorders characterised by recurrent seizures. The disease results from the fact that the neurons (brain cells) of epileptic patients seem to be incapable of properly conduct the nervous signal. This inability leads to excessive and disordered electric activity in the patients’ brain, which can lead to seizures. Seizures trigger involuntary muscle movements and can have a multitude of effects such as altered sensations, changes in awareness, behaviour, movement and/or body function.

Epilepsy affects about 2% of the world population and can create problems in the simplest of everyday activities such as driving, attending a job, school or even staying home alone what has important economic implications for society. Additionally, due to the unpredictability of the seizures that creates a life of constant fear for patients, there is also a extremely high social toll for both patients and their families.



Although treatments, including surgery, are available, for about a third of patients seizures cannot be controlled and new more effective therapies are necessary. In fact, a problem with epilepsy is its multiple causes and consequently the need for different treatments. Disease causes range from abnormal brain development, drug and alcohol abuse, tumours, head trauma or strokes to, in about half of the total cases, defective genes. In this last case, recent advances in the understanding of the human genome have helped to identify genes that can, when altered, lead to disruption of neurons’ normal function and so predispose to epilepsy but much is still unknown.

One example is IGE that accounts for about 40% of all epilepsy cases, being the most common variant of the disease. IGE has a complex genetic origin with several interacting predisposing genes and although investigations on its genetic causes have been done, so far, all studies have proven inconclusive.

Dalila Pinto, Kasteleijn-Nolst Trenité, Bobby P.C. Koeleman and colleagues at University Medical Centre Utrecht and the Epilepsy Institute of the Netherlands in the Netherlands, the Hôpitaux Universitaires de Strasbourg in France and the Institute of Biomedical Sciences Abel Salazar in Portugal decided to approach the study of IGE’s genetic complexity in a different form. The team of researchers choose to study only one of the traits associated and believed to contribute to the disease –photosensitivity – and from this information start constructing the big genetic picture behind IGE.

Photosensitivity or photoparoxysmal response (PPR) is an abnormal visual sensitivity of the brain in response to flickering lights, which, from families and twin studies, is believed to have a genetic origin. PPR appears associated with many idiopathic (of genetic origin) epilepsies, and, at least with IGE, is suspected to be involved in the disease’s mechanism. PPR has the additional advantage of be monitored with an electrocardiogram machine in clinic and so sufferers are objectively identified without the need to rely on clinical symptoms.

Pinto, Trenité, Koeleman and colleagues, using a technique called “genome wide linkage scan” studied sixteen Dutch and French families suffering from a PPR-associated epilepsy, in a total of one hundred and five individuals. The technique consists in the use of several markers, with known localisation in the DNA, to identify/locate the areas in the chromosomes which are conserved among patients and so probably contain the gene or genes associated with disease.

The team of researchers found that chromosome 7 band (or region) 32 and chromosome 16 band 13 were associated with PPR. This result suggests that genes involved in photosensitivity, and consequently with susceptibility to PPR-associated epilepsies, are localised in these areas. Further research is now on the way in order to precisely identify these genes.

Pinto, Trenité, Koeleman and colleagues’ work is very important; by contributing for the identification of susceptibility genes for an epilepsy-related trait their research helps to understand the mechanisms behind epilepsy and ultimately to find better treatment strategies, helping patients to have a better quality of life and maybe one day have the possibility of cure.

Piece researched and written by: Catarina Amorim
(catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://hmg.oupjournals.org/cgi/content/abstract/14/1/171?ct

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>