Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSI Reveals Invention for Detection and Precise Quantification of Molecules

23.12.2004


Researchers at The Molecular Sciences Institute revealed means for sensitive detection and precise quantification of arbitrarily designated molecules. The work is published in the current issue of Nature Methods.



The Cover Article, entitled "Using protein-DNA chimeras to detect and count small numbers of molecules," describes "tadpole" molecules, and their use to detect and count small numbers of proteins and other molecules.

Detection and quantification methods based on these molecules have exquisite sensitivity, immense dynamic range, and unprecedented quantitative precision. These attributes should make the molecules useful for applications from diagnosis and assessment of human disease, to environmental monitoring, to detection of pathogens during an emerging infectious disease or a deliberate biological attack.


Methods based on these molecules are designed to work with the existing infrastructure of PCR machines, which are widely deployed and found most county public health departments in the United States.

According to Dr. Roger Brent, MSI Director and senior member of the team, "We called the molecules tadpoles because they consist of a protein head coupled to a DNA tail. The head binds the specific target molecule, while the DNA tail lets us count the number of target molecules."

Dr. Ian Burbulis, a researcher at MSI, devised the tadpole molecules and is the first author of the paper. According to Dr. Burbulis, "If you want to understand the mechanistic operation of biological systems, you need to know the precise numbers of each component part found in individual cells. Tadpoles and methods based on them should make that possible."

To count molecules so precisely, the researchers resorted to statistical methods sometimes used in high energy physics. The improved statistical techniques may be useful in other applications, such as management of therapy for HIV.

The work is funded by MSI’s Alpha Project, its flagship effort to predict the future behavior of a prototype cellular system. The Alpha project is funded by the National Institutes of Health’s National Human Genome Research Institute. In 2002, NHGRI named MSI a "Center of Excellence in Genomic Science," an acknowledgement of MSI’s past and future research contributions in the field.

"This invention is almost a textbook example of how research into fundamental biology can spin off applications that might impact human health and safety in fairly short order," said Dr. Brent.

The invention is also described in an accompanying Nature Methods "News and Views" article by Stanford researcher Dr. Garry Nolan, who wrote that tadpoles may be an "appealing system for researchers wanting a standardized, high-throughput, and accurate detection system for... just about anything."

The Molecular Sciences Institute is an independent nonprofit research laboratory that combines genomic experimentation with computer modeling. Work at MSI aims to weave biology together with physics, engineering, computer science, and mathematics to enable precise, quantitative, prediction of the future behaviors of biological systems.

Nature Methods is a first-tier journal for new methods and significant improvements in life sciences and chemistry.

Maryanne McCormick | EurekAlert!
Further information:
http://www.molsci.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>