Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MSI Reveals Invention for Detection and Precise Quantification of Molecules


Researchers at The Molecular Sciences Institute revealed means for sensitive detection and precise quantification of arbitrarily designated molecules. The work is published in the current issue of Nature Methods.

The Cover Article, entitled "Using protein-DNA chimeras to detect and count small numbers of molecules," describes "tadpole" molecules, and their use to detect and count small numbers of proteins and other molecules.

Detection and quantification methods based on these molecules have exquisite sensitivity, immense dynamic range, and unprecedented quantitative precision. These attributes should make the molecules useful for applications from diagnosis and assessment of human disease, to environmental monitoring, to detection of pathogens during an emerging infectious disease or a deliberate biological attack.

Methods based on these molecules are designed to work with the existing infrastructure of PCR machines, which are widely deployed and found most county public health departments in the United States.

According to Dr. Roger Brent, MSI Director and senior member of the team, "We called the molecules tadpoles because they consist of a protein head coupled to a DNA tail. The head binds the specific target molecule, while the DNA tail lets us count the number of target molecules."

Dr. Ian Burbulis, a researcher at MSI, devised the tadpole molecules and is the first author of the paper. According to Dr. Burbulis, "If you want to understand the mechanistic operation of biological systems, you need to know the precise numbers of each component part found in individual cells. Tadpoles and methods based on them should make that possible."

To count molecules so precisely, the researchers resorted to statistical methods sometimes used in high energy physics. The improved statistical techniques may be useful in other applications, such as management of therapy for HIV.

The work is funded by MSI’s Alpha Project, its flagship effort to predict the future behavior of a prototype cellular system. The Alpha project is funded by the National Institutes of Health’s National Human Genome Research Institute. In 2002, NHGRI named MSI a "Center of Excellence in Genomic Science," an acknowledgement of MSI’s past and future research contributions in the field.

"This invention is almost a textbook example of how research into fundamental biology can spin off applications that might impact human health and safety in fairly short order," said Dr. Brent.

The invention is also described in an accompanying Nature Methods "News and Views" article by Stanford researcher Dr. Garry Nolan, who wrote that tadpoles may be an "appealing system for researchers wanting a standardized, high-throughput, and accurate detection system for... just about anything."

The Molecular Sciences Institute is an independent nonprofit research laboratory that combines genomic experimentation with computer modeling. Work at MSI aims to weave biology together with physics, engineering, computer science, and mathematics to enable precise, quantitative, prediction of the future behaviors of biological systems.

Nature Methods is a first-tier journal for new methods and significant improvements in life sciences and chemistry.

Maryanne McCormick | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>