Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSI Reveals Invention for Detection and Precise Quantification of Molecules

23.12.2004


Researchers at The Molecular Sciences Institute revealed means for sensitive detection and precise quantification of arbitrarily designated molecules. The work is published in the current issue of Nature Methods.



The Cover Article, entitled "Using protein-DNA chimeras to detect and count small numbers of molecules," describes "tadpole" molecules, and their use to detect and count small numbers of proteins and other molecules.

Detection and quantification methods based on these molecules have exquisite sensitivity, immense dynamic range, and unprecedented quantitative precision. These attributes should make the molecules useful for applications from diagnosis and assessment of human disease, to environmental monitoring, to detection of pathogens during an emerging infectious disease or a deliberate biological attack.


Methods based on these molecules are designed to work with the existing infrastructure of PCR machines, which are widely deployed and found most county public health departments in the United States.

According to Dr. Roger Brent, MSI Director and senior member of the team, "We called the molecules tadpoles because they consist of a protein head coupled to a DNA tail. The head binds the specific target molecule, while the DNA tail lets us count the number of target molecules."

Dr. Ian Burbulis, a researcher at MSI, devised the tadpole molecules and is the first author of the paper. According to Dr. Burbulis, "If you want to understand the mechanistic operation of biological systems, you need to know the precise numbers of each component part found in individual cells. Tadpoles and methods based on them should make that possible."

To count molecules so precisely, the researchers resorted to statistical methods sometimes used in high energy physics. The improved statistical techniques may be useful in other applications, such as management of therapy for HIV.

The work is funded by MSI’s Alpha Project, its flagship effort to predict the future behavior of a prototype cellular system. The Alpha project is funded by the National Institutes of Health’s National Human Genome Research Institute. In 2002, NHGRI named MSI a "Center of Excellence in Genomic Science," an acknowledgement of MSI’s past and future research contributions in the field.

"This invention is almost a textbook example of how research into fundamental biology can spin off applications that might impact human health and safety in fairly short order," said Dr. Brent.

The invention is also described in an accompanying Nature Methods "News and Views" article by Stanford researcher Dr. Garry Nolan, who wrote that tadpoles may be an "appealing system for researchers wanting a standardized, high-throughput, and accurate detection system for... just about anything."

The Molecular Sciences Institute is an independent nonprofit research laboratory that combines genomic experimentation with computer modeling. Work at MSI aims to weave biology together with physics, engineering, computer science, and mathematics to enable precise, quantitative, prediction of the future behaviors of biological systems.

Nature Methods is a first-tier journal for new methods and significant improvements in life sciences and chemistry.

Maryanne McCormick | EurekAlert!
Further information:
http://www.molsci.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>