Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSI Reveals Invention for Detection and Precise Quantification of Molecules

23.12.2004


Researchers at The Molecular Sciences Institute revealed means for sensitive detection and precise quantification of arbitrarily designated molecules. The work is published in the current issue of Nature Methods.



The Cover Article, entitled "Using protein-DNA chimeras to detect and count small numbers of molecules," describes "tadpole" molecules, and their use to detect and count small numbers of proteins and other molecules.

Detection and quantification methods based on these molecules have exquisite sensitivity, immense dynamic range, and unprecedented quantitative precision. These attributes should make the molecules useful for applications from diagnosis and assessment of human disease, to environmental monitoring, to detection of pathogens during an emerging infectious disease or a deliberate biological attack.


Methods based on these molecules are designed to work with the existing infrastructure of PCR machines, which are widely deployed and found most county public health departments in the United States.

According to Dr. Roger Brent, MSI Director and senior member of the team, "We called the molecules tadpoles because they consist of a protein head coupled to a DNA tail. The head binds the specific target molecule, while the DNA tail lets us count the number of target molecules."

Dr. Ian Burbulis, a researcher at MSI, devised the tadpole molecules and is the first author of the paper. According to Dr. Burbulis, "If you want to understand the mechanistic operation of biological systems, you need to know the precise numbers of each component part found in individual cells. Tadpoles and methods based on them should make that possible."

To count molecules so precisely, the researchers resorted to statistical methods sometimes used in high energy physics. The improved statistical techniques may be useful in other applications, such as management of therapy for HIV.

The work is funded by MSI’s Alpha Project, its flagship effort to predict the future behavior of a prototype cellular system. The Alpha project is funded by the National Institutes of Health’s National Human Genome Research Institute. In 2002, NHGRI named MSI a "Center of Excellence in Genomic Science," an acknowledgement of MSI’s past and future research contributions in the field.

"This invention is almost a textbook example of how research into fundamental biology can spin off applications that might impact human health and safety in fairly short order," said Dr. Brent.

The invention is also described in an accompanying Nature Methods "News and Views" article by Stanford researcher Dr. Garry Nolan, who wrote that tadpoles may be an "appealing system for researchers wanting a standardized, high-throughput, and accurate detection system for... just about anything."

The Molecular Sciences Institute is an independent nonprofit research laboratory that combines genomic experimentation with computer modeling. Work at MSI aims to weave biology together with physics, engineering, computer science, and mathematics to enable precise, quantitative, prediction of the future behaviors of biological systems.

Nature Methods is a first-tier journal for new methods and significant improvements in life sciences and chemistry.

Maryanne McCormick | EurekAlert!
Further information:
http://www.molsci.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>