Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic predisposition can play an important role in development of lung cancer

22.12.2004


First-degree relatives of lung cancer patients have a 2 to 3.5 times greater risk of developing lung cancer than the general population, and tobacco smoke plays a major role, even among those with a genetic predisposition, according to a study in the December 22/29 issue of JAMA.



Lung cancer is the leading cause of death from cancer among men and women in many Western countries, according to background information in the article. Death due to lung cancer in the United States exceeds the death rate from breast, prostate, and colon cancer combined. The dominant role of tobacco smoke as a causative factor in lung cancer has been well established. Other studies have indicated that there may be an inherited predisposition to lung cancer, but data have been limited.

Steinn Jonsson, M.D., of the Landspitali-University Hospital, Reykjavík, Iceland, and colleagues examined the contribution of genetic factors to the risk of developing lung cancer in the population of Iceland. The risks for developing lung cancer for first-, second-, and third-degree relatives of patients with lung cancer were estimated by linking records from the Icelandic Cancer Registry (ICR) of all 2,756 patients diagnosed with lung cancer within the Icelandic population from January 1, 1955, to February 28, 2002, with an extensive genealogical database containing all living Icelanders and most of their ancestors since the settlement of Iceland. The risk for smoking was similarly estimated using a random population-based group of 10,541 smokers from the Reykjavik Heart Study who had smoked for more than 10 years. Of these smokers, 562 developed lung cancer based on the patients with lung cancer list from the ICR.


"The nationwide genealogy database used in our study provided a means for uncovering the familial component by revealing more connections between patients, missed in most other populations," the authors write.

The researchers found that a familial factor for lung cancer was shown to extend beyond the nuclear family, as evidenced by significantly increased risks for first-degree relatives (for parents: 2.7 times increased risk; for siblings: 2.02 times increased risk; and for children: 1.96 times increased risk; second-degree relatives (for aunts/uncles: 1.34 times increased risk; and for nieces/nephews: 1.28 times increased risk; and third-degree relatives (for cousins: 1.14 times increased risk) of patients with lung carcinoma. This effect was stronger for relatives of patients with early-onset disease (age 60 or younger at onset) (for parents: 3.48 times increased risk; for siblings: 3.30 times increased risk; and for children: 2.84 times increased risk).

"… this risk ratio [RR] increase in first-degree relatives of patients with lung carcinoma is the result of a combination of environmental, genetic factors, or both. Using genealogy, our study goes further than other reported studies by demonstrating that this familial factor extends beyond the nuclear family as evidenced by significantly increased RR for second- and third-degree relatives of patients with lung carcinoma. In the more distant relationships, shared environmental factors are likely to be of less significance, providing a stronger evidence for genetic factors given that RR is in excess," they write.

"… although the results presented here support a role for genetics in the risk of lung carcinoma, it should be emphasized that tobacco smoke plays a dominant role in the pathogenesis of this disease, even among those individuals who are genetically predisposed to lung carcinoma," the authors conclude.

Edward Farmer | EurekAlert!
Further information:
http://www.jama.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>