Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA may hold key to information processing and data storage

21.12.2004


The DNA molecule--nature’s premier data storage material--may hold the key for the information technology industry as it faces demands for more compact data processing and storage circuitry. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used DNA’s ability to assemble itself into predetermined patterns to construct a synthetic DNA scaffolding with regular, closely spaced docking sites that can direct the assembly of circuits for processing or storing data. The scaffolding has the potential to self-assemble components 1,000 times as densely as the best information processing circuitry and 100 times the best data storage circuitry now in the pipeline. Members of the team first published their innovation in 2003, and they have now refined the technique to allow more efficient and more versatile assembly of components. The new work, which was a collaborative effort with chemistry professors Karin Musier-Forsyth and T. Andrew Taton at Minnesota and Nadrian C. Seeman at New York University, is reported in the December issue of Nano Letters, a publication of the American Chemical Society.

"There’s a need for programmability and precision on the scale of a nanometer--a billionth of a meter--in the manufacture of high-density nanoelectronic circuitry," said Kiehl. "With DNA scaffolding, we have the potential for arranging components with a precision of one-third of a nanometer.

"In a standard silicon-based chip, information processing is limited by the distance between units that process and store information. With DNA scaffolding, we can lay out devices closely, so the interconnects are very short and the performance very high."



The DNA scaffolding is made from synthetic DNA "tiles" that spontaneously assemble in a predetermined pattern to form a sheet of molecular fabric, much like corduroy. The ripples in the fabric are formed by rows of sticky DNA strands that occur at regular intervals in the scaffolding and function as a strip of Velcro® hooks that fasten to nanocomponents coated with matching DNA strands. The nanocomponents could be metallic particles designed to process or store data in the form of an electrical or magnetic state, or they could be organic molecules--whatever would best process or store the information desired.

In the earlier work, members of the Kiehl team made DNA scaffolding with regularly spaced gold nanocomponents pre-woven into the fabric, completing the synthesis all in one operation. Now, the team first makes DNA scaffolding with regularly spaced sticky DNA strips and then adds the nanocomponents, which stick to the DNA strips in rows. This allows them to use optimal synthetic methods for both steps. It’s analogous to using strips of Velcro® in cloth: It’s much easier to get a useful pattern by first weaving cloth and Velcro® strips together, and then attaching beads or other objects to the strips later, than it is by adding the objects during the weaving process.

The new procedure also lets the team add any one of various nanocomponents--such as other metals, organic molecules or tiny electronic devices--at a later time, depending on what is needed for the application. The result is a more perfect scaffolding, better and more regular attachment of electronic units, and more diversity in the types of units and the types of circuitry that can be made.

"We can now assemble a DNA scaffolding on a preexisting template, such as a computer chip, and then--on the spot--assemble nanocomponents on top of the DNA," said Kiehl. The nanocomponents can hold electrical charge or a magnetic field, either of which would represent a bit of data, and interactions between components can act to process information. Circuitry based on regular arrays of closely spaced components could be used for quickly recognizing objects in a video image and detecting motion in a scene -- slow and difficult tasks for conventional computer chips. The technology could help computers identify objects in images with something approaching the speed of the human eye and brain, Kiehl said. The technology could also be used for various other applications, including chemical and biological sensing, in which case the strips would be designed to stick to the tiny objects or molecules to be detected.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>