Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA may hold key to information processing and data storage

21.12.2004


The DNA molecule--nature’s premier data storage material--may hold the key for the information technology industry as it faces demands for more compact data processing and storage circuitry. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used DNA’s ability to assemble itself into predetermined patterns to construct a synthetic DNA scaffolding with regular, closely spaced docking sites that can direct the assembly of circuits for processing or storing data. The scaffolding has the potential to self-assemble components 1,000 times as densely as the best information processing circuitry and 100 times the best data storage circuitry now in the pipeline. Members of the team first published their innovation in 2003, and they have now refined the technique to allow more efficient and more versatile assembly of components. The new work, which was a collaborative effort with chemistry professors Karin Musier-Forsyth and T. Andrew Taton at Minnesota and Nadrian C. Seeman at New York University, is reported in the December issue of Nano Letters, a publication of the American Chemical Society.

"There’s a need for programmability and precision on the scale of a nanometer--a billionth of a meter--in the manufacture of high-density nanoelectronic circuitry," said Kiehl. "With DNA scaffolding, we have the potential for arranging components with a precision of one-third of a nanometer.

"In a standard silicon-based chip, information processing is limited by the distance between units that process and store information. With DNA scaffolding, we can lay out devices closely, so the interconnects are very short and the performance very high."



The DNA scaffolding is made from synthetic DNA "tiles" that spontaneously assemble in a predetermined pattern to form a sheet of molecular fabric, much like corduroy. The ripples in the fabric are formed by rows of sticky DNA strands that occur at regular intervals in the scaffolding and function as a strip of Velcro® hooks that fasten to nanocomponents coated with matching DNA strands. The nanocomponents could be metallic particles designed to process or store data in the form of an electrical or magnetic state, or they could be organic molecules--whatever would best process or store the information desired.

In the earlier work, members of the Kiehl team made DNA scaffolding with regularly spaced gold nanocomponents pre-woven into the fabric, completing the synthesis all in one operation. Now, the team first makes DNA scaffolding with regularly spaced sticky DNA strips and then adds the nanocomponents, which stick to the DNA strips in rows. This allows them to use optimal synthetic methods for both steps. It’s analogous to using strips of Velcro® in cloth: It’s much easier to get a useful pattern by first weaving cloth and Velcro® strips together, and then attaching beads or other objects to the strips later, than it is by adding the objects during the weaving process.

The new procedure also lets the team add any one of various nanocomponents--such as other metals, organic molecules or tiny electronic devices--at a later time, depending on what is needed for the application. The result is a more perfect scaffolding, better and more regular attachment of electronic units, and more diversity in the types of units and the types of circuitry that can be made.

"We can now assemble a DNA scaffolding on a preexisting template, such as a computer chip, and then--on the spot--assemble nanocomponents on top of the DNA," said Kiehl. The nanocomponents can hold electrical charge or a magnetic field, either of which would represent a bit of data, and interactions between components can act to process information. Circuitry based on regular arrays of closely spaced components could be used for quickly recognizing objects in a video image and detecting motion in a scene -- slow and difficult tasks for conventional computer chips. The technology could help computers identify objects in images with something approaching the speed of the human eye and brain, Kiehl said. The technology could also be used for various other applications, including chemical and biological sensing, in which case the strips would be designed to stick to the tiny objects or molecules to be detected.

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>