Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy reduces skin cancer to sunburn in mouse model

13.12.2004


Researchers at UT Southwestern Medical Center at Dallas have successfully tested the first gene therapy for skin cancer, using a mouse model for the disease xeroderma pigmentosum, or XP.

Their results, available online and to be published in an upcoming issue of the Proceedings of the National Academy of Sciences, show promise for similar gene therapy to be pursued in children suffering from this rare disorder.

XP is a debilitating disease in which patients must avoid the sun and all other sources of ultraviolet (UV) light. Exposure to UV light increases the risk for all cancers, but exposed skin is most prone to the disease.With a 10,000-fold increase in cancer risk, many XP sufferers eventually succumb to tumors at an early age.



Mice with mutations in the gene Xpa suffer from XP and develop cancerous lesions on their skin within three weeks after UV light exposure. Dr. Errol Friedberg, professor and chair of pathology at UT Southwestern, in collaboration with Dr. Carlos F.M. Menck of the Institutes of Biomedical Sciences in Sao Paulo, Brazil injected the normal gene into mice suffering from XP. After treatment with the normal gene, the mice were free from disease.

"Gene therapy for XP has the potential to completely prevent cancer in a group of patients who otherwise may suffer no other ill effects from their genetic defect," Dr. Friedberg said.

When the body is exposed to UV light, the DNA in dividing cells can become damaged. Normally, the body enlists a group of proteins whose job it is to repair the sites of UV-induced damage. But in children with XP, mistakes in DNA caused by UV light cannot be fixed because of mutations in the genes for the repair proteins. DNA damage goes uncorrected, and as cells divide they accumulate numerous mutations. When these mutations occur in genes that normally suppress cancer, cells develop abnormally and cancer ensues.

A mutation in any one of seven human genes involved in DNA repair is sufficient to cause XP. One of these genes is XPA. Humans with mutations in XPA are one the largest groups of XP patients.

In their gene therapy study, Dr. Friedberg and colleagues injected the normal version of mouse Xpa into the mutant mice, using a disabled virus that infects multiple cells. They then exposed the mice to UV light for a few hours over several days. Five months after the last exposure – long after Xpa mutant mice would normally develop skin lesions – the treated mice merely had sunburn.

The skin cells surrounding the site of the injection in the treated Xpa mutant mice were nearly identical to those of normal animals, indicating that the DNA repair mechanism had been restored by the addition of the normal Xpa gene, Dr. Friedberg said.

Dr. Friedberg said he believes that with some technical refinement, this gene therapy technique may soon be applicable to all the mutations that cause XP in humans.

"XP is a disease that lends itself well to gene therapy, for a variety of reasons," Dr. Friedberg said. "Most importantly, skin cells are highly accessible for introducing foreign genes. Also, infection of the skin with a virus carrying the gene of interest, as we did with the mice, allows for many, many cells to receive the appropriate gene. Once some of the existing technical limitations are solved these studies can hopefully be extended to trials with human XP patients."

Other UT Southwestern contributors to this research are Maria Carolina N. Marchetto, visiting student and lead author, and Dr. Dennis Burns, professor of pathology. Dr. Allyson R. Muotri of the Salk Institute also contributed to the study.

Megha Satyanarayana | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>