Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


’Signal’ identified that enables malarial parasites to target blood cells


Northwestern University researchers have identified a key molecular "signal" that allows malarial parasites to release virulence proteins inside human red blood cells.

The investigators, led by Kasturi Haldar and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized. Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine. Other key researchers on this study were Souvik Bhattacharjee; Christiaan van Ooij; Konstantinos Liolios; Travis Harrison; and Carlos Estrano.

Findings from the Northwestern study were published in the Dec. 10 issue of the journal Science. Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world’s population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries. Plasmodium faciparum is the most virulent form of the four human malarial parasite species, killing over 1 million children each year, and is responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.

Following invasion of human red blood cells – the "blood stage" of malaria – P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival and are responsible for fatal pathologies such as cerebral – or "brain" – malaria as well as placental malaria. It is during the "blood stage" of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a "signal" on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a "secretome") that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (five to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins). Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.

Elizabeth Crown | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>