Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish study yields observation of muscle formation

07.12.2004


Understanding how muscle cells form is crucial to developing new treatments for diseases such as muscular dystrophy and to treating muscle injuries. However, while scientists have focused on muscle cells in culture, they know little about how muscle cells form in a developing embryo.



In this month’s issue of the journal Developmental Cell, Clarissa Henry, assistant professor in the University of Maine Dept. of Biological Sciences, reports findings from a study of muscle cell development in zebrafish embryos. Looking at the formation of two types of muscle fibers, Henry and co-author Sharon L. Amacher of the University of California, Berkeley, describe a process regulated by a gene known as Hedgehog.

The article is titled "Zebrafish Slow Muscle Cell Migration Induces a Wave of Fast Muscle Morphogenesis." It is based on research at the University of California, Berkeley where Henry was a post-doctoral scientist before coming to UMaine.


The authors show that cells leading to the formation of so-called "slow twitch" muscle fibers can induce the formation of "fast twitch" fibers. These two types of fibers differ in their structure and ability to exert force for extended periods of time.

The mechanism of communication between slow and fast twitch cells is unknown, but it is likely, the authors write, that similar examples will be found in other types of tissues.

The findings describe "how fast muscle fibers form in zebrafish, which is a fantastic model system for development in general and muscular dystrophy in particular," says Henry.

Nick Houtman | EurekAlert!
Further information:
http://www.maine.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>