Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish study yields observation of muscle formation

07.12.2004


Understanding how muscle cells form is crucial to developing new treatments for diseases such as muscular dystrophy and to treating muscle injuries. However, while scientists have focused on muscle cells in culture, they know little about how muscle cells form in a developing embryo.



In this month’s issue of the journal Developmental Cell, Clarissa Henry, assistant professor in the University of Maine Dept. of Biological Sciences, reports findings from a study of muscle cell development in zebrafish embryos. Looking at the formation of two types of muscle fibers, Henry and co-author Sharon L. Amacher of the University of California, Berkeley, describe a process regulated by a gene known as Hedgehog.

The article is titled "Zebrafish Slow Muscle Cell Migration Induces a Wave of Fast Muscle Morphogenesis." It is based on research at the University of California, Berkeley where Henry was a post-doctoral scientist before coming to UMaine.


The authors show that cells leading to the formation of so-called "slow twitch" muscle fibers can induce the formation of "fast twitch" fibers. These two types of fibers differ in their structure and ability to exert force for extended periods of time.

The mechanism of communication between slow and fast twitch cells is unknown, but it is likely, the authors write, that similar examples will be found in other types of tissues.

The findings describe "how fast muscle fibers form in zebrafish, which is a fantastic model system for development in general and muscular dystrophy in particular," says Henry.

Nick Houtman | EurekAlert!
Further information:
http://www.maine.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>