Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing the Kiss of Death

06.12.2004


At the 2004 ASCB Meeting: Visualizing the Kiss of Death



The very idea threw the Victorian poet Alfred Lord Tennyson into a funk. “Nature, red in tooth and claw,” Tennyson called the nightmarish idea that life was an unending battle to eat or be eaten. If only Tennyson could have seen the latest self-defense videos made by Daniela Malide and others at the National Institutes of Health in Bethesda, MD. Using time-lapse confocal laser scanning microscopy, Malide captured human T-cells picking up distress signals from cells infected with a virus and zeroing in for the kill.

Scientists have worked out experimentally many of the mechanisms and tactics of the immuno-surveillance system but Malide’s real-time videos show the action as it unfolds. The videos also revealed for the first time that “killer” T-cells take far longer to dispatch their viral enemies than was generally believed. Instead of a brisk 10-minute rubout, these killer T-cells can take up to two hours to mount a fatal assault.


The struggle begins when MHC (Major Histocompatibility Complex) Class I molecules inside cells infected with vaccinia virus, the virus used for small pox vaccination, grab bits of scrap viral protein and present them on the cell surface to flag down passing Tcd8+ killer cells. Nearly all cell types in the body have MHC class I molecules and the small pieces of viral proteins or peptides that they collect in the cytosol are a byproduct of imperfect protein synthesis by the virus. To passing T-cells, these viral peptides are highly suspect and call for a closer look. The T-cells arrive “ready to kill,” packing death-inducing proteins (perforin and granzymes) in their lytic granules.

On the video, the T-cells make contact, fluorescent labels marking their cell surface and interior poison granules. Inside the infected cells, another fluorescent label shows the vaccinia virus glowing brightly as it goes about its own deadly business of replicating. Then comes the surprise. Says Malide, “We found that contrary to the general notion that target cell lysis often occurs within 10 minutes of establishing firm contact with T-cells, lysis occurs with much greater delay, generally 45 to 120 minutes. During this time, many T-cells remain in contact with target cells, and we frequently see the transfer of viral proteins and MHC Class I molecules to T-cells.”

Only after this prolonged interaction does the killer cell kill. The perforin and granzyme explode inside the infected cell, the glowing vaccinia virus goes abruptly dark, and the target cell disintegrates. Even viewed through a microscope, it is a violent ending, revealing Nature to be, if not red in tooth and claw, then fluorescent green in killer T-cells.

Real Time Visualization of Cytotoxic T Lymphocyte Killing of Vaccinia Virus Infected Target Cells, D. Malide,1 S. Basta,2 J. R. Bennink,2 J. W. Yewdell2 ; 1 Light Microscopy Facility, NIH-NHLBI, Bethesda, MD, 2 Laboratory of Viral Diseases, NIH-NIAID, Bethesda, MD.

At the ASCB Meeting: Session 173, Minisymposium 4: Cell Biology of the Immune System, Room 146. Author presents: Sunday, Dec. 5, 3:30 — 5:45 PM.

| newswise
Further information:
http://www.ascb.org/publicpolicy/pressbooks/pressbook04.html
http://www.ascb.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>