Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Citrus shows promise for certain childhood cancer

01.12.2004


Orange juice and cancer don’t mix. In fact, the popular citrus drink could become a cocktail to prevent or stop the deadly disease in humans.



Research by Texas Agriculture Experiment Station scientists has shown that citrus compounds called limonoids targeted and stopped neuroblastoma cells in the lab. They now hope to learn the reasons for the stop-action behavior and eventually try the citrus concoction in humans.

Neuroblastomas account for about 10 percent of all cancer in children, Harris said, and is usually a solid tumor in the neck, chest, spinal cord or adrenal gland. The finding in citrus is promising not only for its potential to arrest cancer, but because limonoids induce no side affects, according to Dr. Ed Harris, Experiment Station biochemist who collaborated on the study with Dr. Bhimu Patil, a plant physiologist at the Texas A&M University-Kingsville Citrus Center in Weslaco. "Limonoids are naturally occurring compounds," Harris said. "Unlike other anti-cancer drugs that are toxic, limonoids apparently do not hurt a person. That’s the beautiful potential."


Patil calls citrus fruit "a vast reservoir of anti-carcinogens." As a plant physiologist, he has succeeded in isolating and purifying a number of limonoids from citrus so that the biochemists could evaluate and compare their anti-cancer abilities at the molecular level. "Limonoids are unique to citrus," Patil said. "They are not present in any other fruits or vegetables. My goal is to find the direct benefits of citrus on human health. "

He said a challenging task is to isolate the limonoid compounds, "because some are present in very small concentrations."

In fact, citrus breeders seeking to improve the fruit’s tastiness for consumers and yield for producers led researchers to discover limonoids – eight of which have been characterized from extractions at the Weslaco facility, according to the researchers. "If I ask why one should drink orange juice every day," Harris noted, "almost everyone would say for vitamin C. That’s true, but we also need to learn two new words – flavonoids and limonoids."

Harris explained that flavonoids and limonoids – nutrient-packed pigments that give color and taste to fruit – may work against cancer in any of three ways: prevent it from forming, slow the growth of existing cancer, or kill cancer cells.

"The limonoids, which differ structurally from flavonoids, seem to do all three," he said of tests in his lab by one of Patil’s graduate students, Shibu Poulose, who also worked in Harris’ College Station lab. Their work emphasized the compounds’ ability to kill existing the neuroblastoma cells with the rationale that if the method and time limonoids take to obliterate the cancer could be found, perhaps scientists could exploit it to help cure the disease.

What Poulose found with the extracted limonoid was that the neuroblastoma cells died with relatively small amounts of concentrated limonoids and all in 48 hours or less.

They tested this in several ways. First, the limonoids were put through a test to see whether they would quench the oxygen radicals – cancer-causing substances that are destructive to normal cells. The limonoids appeared to be as effective as vitamin C in some of the tests.

Test of cell viability were more impressive, however. The neuroblastoma cells were all dead within two days with just 5, 10 and 50 micromoles of limonoids. A micromole is about the equivalent of a tiny skin flake. Some limonoids were more effective than others, but all had killing potential. These amounts of limonoids could easily be obtained from a glass of orange or grapefruit juice.

Next, cell viability tests aimed at whether the cell death was caused by apoptosis -- a programmed cell death that spirals in an unstoppable fashion unstoppably once the vulnerable spot on the cell is hit. "Suppose we have cancer and the cancer cell mutates repeatedly until it takes over our organs," he said. "So, a compound comes in and spots those cells with the unusual metabolism and kills them by degrading the cells’ protein and fragmenting their DNA until the cells succumb.

"Apoptosis is beneficial. It’s the immunity system in the body that causes the white cells to recognize things that are not supposed to be there and attack them," Harris explained. Apoptosis early in life removes those white cells that would attack the body’s own protein, for example.

To test this, the researchers applied 1, 5, 10 and 50 micromolar amounts of limonoids to neuroblastoma cells, then put an apoptosis-blocking chemical on an identical comparison set. Neuroblastoma cells with the blocker did not die, indicating that the limonoids trigger apoptosis which in turn results in the cell death. In their tests, the cancer cells treated with limonoids – but not the apoptosis blocker – all died within 36 hours.

The researchers also looked at caspases, destructive enzymes that are activated to cause chain reactions that lead to cell death. "A question was whether limonoids turn on apoptosis which then turn on the caspases and if so, whether that means there is caspases resting in our cells (that could be activated to help fight cancer in us)," he said.

This part of the research revealed that with only 5 micromoles of a limonoid known as LG, the cancer cells were dying in as little as 12 hours.

"The last phase in killing cancer is to make sure the DNA is destroyed because that is the death knell for the cell," Harris said. "It’s intriguing that this amount appeared to have no effect on normal cells and only certain types of cancer cells are vulnerable. Fortunately, breast cancer cells are on the list of vulnerable cells. This makes it all the more imperative to learn how the process works.

"We don’t have the answer to that yet," he said, "but we have observed that those limonoids with the greatest potency have a closed ring in their chemical structure and that is different from other compounds."

Limonoids with a sugar unit attached, the so-called limonoid glucosides, are water soluble and tasteless; those without the sugar, the aglycons, are responsible for bitterness of some citrus. It was the limonoid glucosides, in this study that had "a dramatic effect" on cancer cell death. "Now that we have seen the cancer cells die and in such a short time," Harris said, "we need to find out why they are so vulnerable and exploit it. It could be that ultimately we are able to give patients an oral cocktail of limonoids in such concentration as to stop their cancer."

Patil said the researchers also will be studying limonoids to find the limits for adding to food. One of the limonoids, glucoside, is tasteless, he noted, so it might become a food additive for its health benefits, but food engineers would need to know how much to add for human consumption.

His lab also is examining whether the compounds vary among citrus species and at different times of the year.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>