Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bones go veggie: Tofu-based implants to help grow bones

01.12.2004


A new Tofu-based biomaterial that can help mend broken bones and damaged tissues is being developed thanks to an investment of £149,000 from NESTA (the National Endowment for Science, Technology and the Arts), the organization that champions UK creativity and innovation.



The idea is the brainchild of Dr Matteo Santin - a senior lecturer at the University of Brighton’s School of Pharmacy and Biomolecular Studies - who has worked in the field of biomaterials since 1991.

Many existing tissue regeneration materials are derived from animal sources and have several drawbacks, including: a high cost of production, the risk of transmitting disease and the lack of intrinsic benefits to living tissue.


De-fatted soybean curds is derived from inexpensive natural products; it actively encourages the formation of new bone growth and has a low potential for immunogenicity and it is completely biodegradable. As ever, the vegetarian option is cheaper and better for you!

The Tofu-based biomaterial could offer doctors a new surgical tool in difficult reconstructive cases. For example, dental surgeons will be able to use it as a means of combating periodontal disease – which affects millions of people in the world, yet only a small percentage receive treatment - as it allows for regeneration of the bones around weakened teeth and other dental implants.

NESTA is investing in the project through its Invention and Innovation programme, the biggest source of early stage seed funding in the UK. With this investment, the team will work with specialist medical staff to produce specific formulations for surgical applications and further substantiate the superior performance of the Tofu-based biomaterial.

As well as its use as a bone filler, the novel biomaterial also has the potential to be used in other applications, such as wound dressings. Mark White, Director of Invention and Innovation at NESTA, said:

“NESTA is delighted to be investing in the early stage development of this ground-breaking biomaterial. Cheap and simple to manufacture, the Tofu-based biomaterial is the first to integrate quickly with a patient’s own tissues, and encourage re-growth of the surrounding tissue. With NESTA support, we are confident that Matteo and his team will be able to progress the material to a real commercial opportunity.”

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>