Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bones go veggie: Tofu-based implants to help grow bones

01.12.2004


A new Tofu-based biomaterial that can help mend broken bones and damaged tissues is being developed thanks to an investment of £149,000 from NESTA (the National Endowment for Science, Technology and the Arts), the organization that champions UK creativity and innovation.



The idea is the brainchild of Dr Matteo Santin - a senior lecturer at the University of Brighton’s School of Pharmacy and Biomolecular Studies - who has worked in the field of biomaterials since 1991.

Many existing tissue regeneration materials are derived from animal sources and have several drawbacks, including: a high cost of production, the risk of transmitting disease and the lack of intrinsic benefits to living tissue.


De-fatted soybean curds is derived from inexpensive natural products; it actively encourages the formation of new bone growth and has a low potential for immunogenicity and it is completely biodegradable. As ever, the vegetarian option is cheaper and better for you!

The Tofu-based biomaterial could offer doctors a new surgical tool in difficult reconstructive cases. For example, dental surgeons will be able to use it as a means of combating periodontal disease – which affects millions of people in the world, yet only a small percentage receive treatment - as it allows for regeneration of the bones around weakened teeth and other dental implants.

NESTA is investing in the project through its Invention and Innovation programme, the biggest source of early stage seed funding in the UK. With this investment, the team will work with specialist medical staff to produce specific formulations for surgical applications and further substantiate the superior performance of the Tofu-based biomaterial.

As well as its use as a bone filler, the novel biomaterial also has the potential to be used in other applications, such as wound dressings. Mark White, Director of Invention and Innovation at NESTA, said:

“NESTA is delighted to be investing in the early stage development of this ground-breaking biomaterial. Cheap and simple to manufacture, the Tofu-based biomaterial is the first to integrate quickly with a patient’s own tissues, and encourage re-growth of the surrounding tissue. With NESTA support, we are confident that Matteo and his team will be able to progress the material to a real commercial opportunity.”

Joseph Meaney | alfa
Further information:
http://www.nesta.org.uk

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>