Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fossil may be closest yet to ancestor of all great apes

19.11.2004


A new ape species from Spain called Pierolapithecus catalaunicus, or its close relative, may have been the last common ancestor to all living great apes, including humans, researchers say. The Spanish paleontology team describes its fossil find in the 19 November issue of the journal Science, published by AAAS, the nonprofit science society.



Like other great apes, Pierolapithecus had a stiff lower spine and other special adaptations for climbing. These features, plus the fossil’s age of about 13 million years, suggest that this species was probably close to the last great ape ancestor, according to Salvador Moyà-Solà of the Miguel Crusafont Institute of Paleontology and the Diputación de Barcelona in Barcelona, Spain and his colleagues.

The great apes, which now include orangutans, chimpanzees, gorillas and humans, are thought to have diverged from the lesser apes, a group that contains modern gibbons and siamangs, about 11 to 16 million years ago. Fossil evidence from this time period, the middle Miocene epoch, is sparse, however, and researchers have long been searching for the great ape ancestors that emerged after this split.


The scanty fossil record has revealed several contenders, including Kenyapithecus, and Equatorius or the older Morotopithecus and Afropithecus, but the fossils that do exist indicate that these ancient "hominoids" were more primitive than Pierolapithecus, Moyà-Solà said. The relatively complete Pierolapithecus skeleton shows a variety of important features shared by modern great apes, according to the researchers. "The importance of this new fossil is that for the first time all the key areas that define modern great apes are well-preserved," Moyà-Solà said.

Although Pierolapithecus was discovered in Spain, Moyà-Solà believes that this species probably also lived in Africa. "Africa is the factory of primates. In the fossil record of the lower and middle Miocene in Africa, we have found a fantastic diversity of primitive hominoids with monkey-like body structures. In Eurasia, apes appeared suddenly in middle Miocene -- before then primates there were nearly unknown. For that reason, the source area in my opinion is Africa," he said.

The individual that the researchers discovered was probably male, weighed approximately 35 kilograms and from its tooth shape appears to have been a fruit eater. The skeleton was discovered at a new paleontological site, Barranc de Can Vila 1, near Barcelona. Pierolapithecus’ ribcage, lower spine and wrist show key signs of specialized climbing abilities that link this specimen with modern great apes. In contrast, monkeys, which belong to a more primitive group, have more generalized, versatile movement abilities and lack these particular traits.

For example, Pierolapithecus’ ribcage, or thorax, is similar to that of modern great apes because it is wider and flatter than a monkey ribcage, the researchers report. "The thorax is the most important anatomical part of this fossil, because it’s the first time that the modern ape-like thorax has been found in the fossil record," Moyà-Solà said. Specimens of other apes, such as Proconsul or Equatorius, have included some rib fragments, "but the morphology is primitive, completely like monkeys," he added. In addition, Pierolapithecus’ shoulder blades lie along its back, as do those of modern great apes and humans. In monkeys, the shoulder blades are on the sides of the ribcage, the way they are in dogs.

In both Pierolapithecus and modern great apes, the lumbar section of the lower spine is relatively short and stiff. The vertebrae in this part of the spine therefore differ from monkey vertebrae, which allow more flexion and extension. These adaptations would have affected Pierolapithecus’ center of gravity, making it easier to assume an upright posture and to climb trees, the researchers say. Also, in Pierolapithecus and modern great apes, only one of the two forearm bones "articulates," or attaches flexibly, to the wrist. This trait allows a relatively large degree of hand rotation and probably helped with climbing, according to Moyà-Solà. Pierolapithecus’ skull was also distinctly great ape-like, the authors say. The face is relatively short, and the structure of the upper nose lies in the same plane as the eyes. In monkeys, a ridge between the eyes interferes with the plane of vision.

Pierolapithecus also had some more primitive, monkey-like features, such as a sloped face and short fingers and toes. Moyà-Solà and his colleagues think this is a sign that various traits emerged separately and perhaps more than once in ape evolution. For example, climbing and hanging abilities are often thought to have evolved together, but Pierolapithecus’ short fingers indicate that it didn’t do a lot of hanging. Hanging-related traits may have evolved several times, showing up later in great apes, the researchers propose.

The first sign of Pierolapithecus’ existence was a canine tooth turned up by a bulldozer that was clearing the land for digging. "Paleontologists in Spain say ’you don’t find a good fossil, the good fossil finds you,’" Moyà-Solà said.

Ginger Pinholster | EurekAlert!
Further information:
http://www.aaas.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>