Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies molecular complex vital to creation of miRNAs

18.11.2004


Possible links to DiGeorge syndrome, schizophrenia also seen



Tiny bits of short-lived genetic material called microRNAs, or miRNAs, have attracted enormous interest from scientists since their discovery in humans only a few years ago. Viewed most broadly, they appear to play significant roles in controlling gene expression and development in many different settings.

Now, a new study from researchers at The Wistar Institute identifies for the first time a molecular complex vital for the creation of miRNAs. This complex, dubbed the microprocessor complex, contains two proteins, one of which has been linked to DiGeorge syndrome, the most common disorder of genetic deletion in humans. A swathe of DNA containing multiple genes is missing in DiGeorge syndrome patients, and many are born with heart defects, immune deficiencies, and developmental and behavioral problems. Intriguingly, one in four also goes on to develop schizophrenia, a disorder for which causative genes have yet to be identified. The new study appears in the November 11 issue of Nature.


"Discovery of this microprocessor complex gives us important insights into the processing mechanisms that generate miRNAs in the body," says Ramin Shiekhattar, Ph.D., an associate professor at Wistar and senior author on the Nature study. "At the same time, we see that one of the components of the complex is implicated in DiGeorge syndrome, suggesting that miRNA activity – or its lack – may be pivotal in the disease process of that multifaceted disorder."

The genes that code for miRNAs initially gives rise to a long primary RNA molecule that must first be cut into small precursor RNA molecules before final processing into mature miRNAs. The finished miRNAs are remarkably small, only 22 nucleotides in length, but powerful. These molecules appear to work by binding to complementary regions in messenger RNA, responsible for translating genes into proteins, or even to certain stretches of DNA. Either way, the result is gene silencing, which is one of the body’s main strategies for regulating genes.

The microprocessor complex discovered by Shiekhattar’s team is composed of two proteins called Drosha and DGCR8. Drosha had been previously identified as being involved in miRNA processing, but the role of DGCR8 is newly seen here. The Wistar scientists showed that both DGCR8 and Drosha were necessary for the processing of primary miRNA into a precursor miRNA – neither alone was sufficient to do the job. In another set of experiments, DGCR8 was intentionally inactivated, which led to excessive accumulations of the primary microRNA. DGCR8 is one of the several genes deleted in DiGeorge syndrome, and this link suggests several paths for future investigations. Shiekhattar plans, for example, to develop a strain of mice lacking the gene for DGCR8 to see whether they display any of the characteristics of DiGeorge syndrome. He also aims to study DiGeorge syndrome patients to see whether they exhibit the excessive accumulations of primary RNA that might be expected due to a DGCR8-deficient, and therefore nonfunctional, microprocessor complex.

Scientists have noted, too, that miRNAs are critical for proper neuronal development. Might miRNA activity, then, provide a new window on schizophrenia, at least in DiGeorge syndrome patients, but perhaps also more globally? "It would certainly be possible to look in schizophrenic populations for mutations in the DGCR8 gene," says Shiekhattar. "If those mutations were found, it could suggest of a significant role for miRNAs in schizophrenia." In the course of their study of the microprocessor complex, the Wistar scientists also identified a second and much larger molecular complex that also incorporates Drosha. This complex contains about 20 proteins, and another goal for Shiekhattar’s team in the future will be to ascertain the as-yet-unknown biological role of this complex.

The lead authors on the Nature study are Richard I. Gregory and Kai-ping Yan, with each contributing equally to the work. The remaining co-authors are Govindasamy Amuthan, Thimmaiah Chendrimada, Behzad Doratotaj, and Neil Cooch. Senior author Shiekhattar is an associate professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program. Support for the research was provided by the National Institutes of Health, the American Cancer Society, and the Jane Coffin Child Memorial Fund for Medical Research.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>