Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study identifies molecular complex vital to creation of miRNAs


Possible links to DiGeorge syndrome, schizophrenia also seen

Tiny bits of short-lived genetic material called microRNAs, or miRNAs, have attracted enormous interest from scientists since their discovery in humans only a few years ago. Viewed most broadly, they appear to play significant roles in controlling gene expression and development in many different settings.

Now, a new study from researchers at The Wistar Institute identifies for the first time a molecular complex vital for the creation of miRNAs. This complex, dubbed the microprocessor complex, contains two proteins, one of which has been linked to DiGeorge syndrome, the most common disorder of genetic deletion in humans. A swathe of DNA containing multiple genes is missing in DiGeorge syndrome patients, and many are born with heart defects, immune deficiencies, and developmental and behavioral problems. Intriguingly, one in four also goes on to develop schizophrenia, a disorder for which causative genes have yet to be identified. The new study appears in the November 11 issue of Nature.

"Discovery of this microprocessor complex gives us important insights into the processing mechanisms that generate miRNAs in the body," says Ramin Shiekhattar, Ph.D., an associate professor at Wistar and senior author on the Nature study. "At the same time, we see that one of the components of the complex is implicated in DiGeorge syndrome, suggesting that miRNA activity – or its lack – may be pivotal in the disease process of that multifaceted disorder."

The genes that code for miRNAs initially gives rise to a long primary RNA molecule that must first be cut into small precursor RNA molecules before final processing into mature miRNAs. The finished miRNAs are remarkably small, only 22 nucleotides in length, but powerful. These molecules appear to work by binding to complementary regions in messenger RNA, responsible for translating genes into proteins, or even to certain stretches of DNA. Either way, the result is gene silencing, which is one of the body’s main strategies for regulating genes.

The microprocessor complex discovered by Shiekhattar’s team is composed of two proteins called Drosha and DGCR8. Drosha had been previously identified as being involved in miRNA processing, but the role of DGCR8 is newly seen here. The Wistar scientists showed that both DGCR8 and Drosha were necessary for the processing of primary miRNA into a precursor miRNA – neither alone was sufficient to do the job. In another set of experiments, DGCR8 was intentionally inactivated, which led to excessive accumulations of the primary microRNA. DGCR8 is one of the several genes deleted in DiGeorge syndrome, and this link suggests several paths for future investigations. Shiekhattar plans, for example, to develop a strain of mice lacking the gene for DGCR8 to see whether they display any of the characteristics of DiGeorge syndrome. He also aims to study DiGeorge syndrome patients to see whether they exhibit the excessive accumulations of primary RNA that might be expected due to a DGCR8-deficient, and therefore nonfunctional, microprocessor complex.

Scientists have noted, too, that miRNAs are critical for proper neuronal development. Might miRNA activity, then, provide a new window on schizophrenia, at least in DiGeorge syndrome patients, but perhaps also more globally? "It would certainly be possible to look in schizophrenic populations for mutations in the DGCR8 gene," says Shiekhattar. "If those mutations were found, it could suggest of a significant role for miRNAs in schizophrenia." In the course of their study of the microprocessor complex, the Wistar scientists also identified a second and much larger molecular complex that also incorporates Drosha. This complex contains about 20 proteins, and another goal for Shiekhattar’s team in the future will be to ascertain the as-yet-unknown biological role of this complex.

The lead authors on the Nature study are Richard I. Gregory and Kai-ping Yan, with each contributing equally to the work. The remaining co-authors are Govindasamy Amuthan, Thimmaiah Chendrimada, Behzad Doratotaj, and Neil Cooch. Senior author Shiekhattar is an associate professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program. Support for the research was provided by the National Institutes of Health, the American Cancer Society, and the Jane Coffin Child Memorial Fund for Medical Research.

Franklin Hoke | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>