Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies molecular complex vital to creation of miRNAs

18.11.2004


Possible links to DiGeorge syndrome, schizophrenia also seen



Tiny bits of short-lived genetic material called microRNAs, or miRNAs, have attracted enormous interest from scientists since their discovery in humans only a few years ago. Viewed most broadly, they appear to play significant roles in controlling gene expression and development in many different settings.

Now, a new study from researchers at The Wistar Institute identifies for the first time a molecular complex vital for the creation of miRNAs. This complex, dubbed the microprocessor complex, contains two proteins, one of which has been linked to DiGeorge syndrome, the most common disorder of genetic deletion in humans. A swathe of DNA containing multiple genes is missing in DiGeorge syndrome patients, and many are born with heart defects, immune deficiencies, and developmental and behavioral problems. Intriguingly, one in four also goes on to develop schizophrenia, a disorder for which causative genes have yet to be identified. The new study appears in the November 11 issue of Nature.


"Discovery of this microprocessor complex gives us important insights into the processing mechanisms that generate miRNAs in the body," says Ramin Shiekhattar, Ph.D., an associate professor at Wistar and senior author on the Nature study. "At the same time, we see that one of the components of the complex is implicated in DiGeorge syndrome, suggesting that miRNA activity – or its lack – may be pivotal in the disease process of that multifaceted disorder."

The genes that code for miRNAs initially gives rise to a long primary RNA molecule that must first be cut into small precursor RNA molecules before final processing into mature miRNAs. The finished miRNAs are remarkably small, only 22 nucleotides in length, but powerful. These molecules appear to work by binding to complementary regions in messenger RNA, responsible for translating genes into proteins, or even to certain stretches of DNA. Either way, the result is gene silencing, which is one of the body’s main strategies for regulating genes.

The microprocessor complex discovered by Shiekhattar’s team is composed of two proteins called Drosha and DGCR8. Drosha had been previously identified as being involved in miRNA processing, but the role of DGCR8 is newly seen here. The Wistar scientists showed that both DGCR8 and Drosha were necessary for the processing of primary miRNA into a precursor miRNA – neither alone was sufficient to do the job. In another set of experiments, DGCR8 was intentionally inactivated, which led to excessive accumulations of the primary microRNA. DGCR8 is one of the several genes deleted in DiGeorge syndrome, and this link suggests several paths for future investigations. Shiekhattar plans, for example, to develop a strain of mice lacking the gene for DGCR8 to see whether they display any of the characteristics of DiGeorge syndrome. He also aims to study DiGeorge syndrome patients to see whether they exhibit the excessive accumulations of primary RNA that might be expected due to a DGCR8-deficient, and therefore nonfunctional, microprocessor complex.

Scientists have noted, too, that miRNAs are critical for proper neuronal development. Might miRNA activity, then, provide a new window on schizophrenia, at least in DiGeorge syndrome patients, but perhaps also more globally? "It would certainly be possible to look in schizophrenic populations for mutations in the DGCR8 gene," says Shiekhattar. "If those mutations were found, it could suggest of a significant role for miRNAs in schizophrenia." In the course of their study of the microprocessor complex, the Wistar scientists also identified a second and much larger molecular complex that also incorporates Drosha. This complex contains about 20 proteins, and another goal for Shiekhattar’s team in the future will be to ascertain the as-yet-unknown biological role of this complex.

The lead authors on the Nature study are Richard I. Gregory and Kai-ping Yan, with each contributing equally to the work. The remaining co-authors are Govindasamy Amuthan, Thimmaiah Chendrimada, Behzad Doratotaj, and Neil Cooch. Senior author Shiekhattar is an associate professor in two programs at Wistar, the gene expression and regulation program and molecular and cellular oncogenesis program. Support for the research was provided by the National Institutes of Health, the American Cancer Society, and the Jane Coffin Child Memorial Fund for Medical Research.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>