Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model gives insight to human hair loss

11.11.2004


A progressive skin disease causing hair loss in adult humans was identified in laboratory mice, providing a genetic tool to study the disease known as alopecia areata (AA).

"Our mouse model has proven to be very useful as a preclinical model to test new treatments for alopecia areata before being used in humans," states lead researcher, John P. Sundberg, D.V.M., Ph.D., of The Jackson Laboratory inBar Harbor, Maine. The study further provided the opportunity to use newly available gene array technology to study AA’s molecular mechanisms.

In this 5-year study, published in the Journal of Investigative Dermatology, researchers identified a virtually identical mouse model for human adult onset AA and were able to reproduce the disease for exploring treatments. Data revealed that the disease has a complicated genetic basis that involves 4 or more genes. These genes include those involved in susceptibility to the disease and genes that regulate pigmentation of the skin and hair. "This [study] provides data for analyzing the genetic candidates responsible for AA as well as insights into other conditions, such as thyroid disorders, which have been associated with AA subsets," as summarized in the November "Clinical Snippets" published in the journal. "Random genome-wide linkage screenings in mice and humans can lead to greater understanding of AA and other complex polygenic diseases."



Alopecia areata is a highly unpredictable, autoimmune skin disease resulting in the loss of hair on the scalp and elsewhere on the body, according to the National Alopecia Areata Foundation. The condition is common, affecting both males and females in approximately 1.7 percent of the world population overall. This accounts for more than 4.7 million people in the United States alone.

Sharon Agsalda | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>