Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse model gives insight to human hair loss

11.11.2004


A progressive skin disease causing hair loss in adult humans was identified in laboratory mice, providing a genetic tool to study the disease known as alopecia areata (AA).

"Our mouse model has proven to be very useful as a preclinical model to test new treatments for alopecia areata before being used in humans," states lead researcher, John P. Sundberg, D.V.M., Ph.D., of The Jackson Laboratory inBar Harbor, Maine. The study further provided the opportunity to use newly available gene array technology to study AA’s molecular mechanisms.

In this 5-year study, published in the Journal of Investigative Dermatology, researchers identified a virtually identical mouse model for human adult onset AA and were able to reproduce the disease for exploring treatments. Data revealed that the disease has a complicated genetic basis that involves 4 or more genes. These genes include those involved in susceptibility to the disease and genes that regulate pigmentation of the skin and hair. "This [study] provides data for analyzing the genetic candidates responsible for AA as well as insights into other conditions, such as thyroid disorders, which have been associated with AA subsets," as summarized in the November "Clinical Snippets" published in the journal. "Random genome-wide linkage screenings in mice and humans can lead to greater understanding of AA and other complex polygenic diseases."



Alopecia areata is a highly unpredictable, autoimmune skin disease resulting in the loss of hair on the scalp and elsewhere on the body, according to the National Alopecia Areata Foundation. The condition is common, affecting both males and females in approximately 1.7 percent of the world population overall. This accounts for more than 4.7 million people in the United States alone.

Sharon Agsalda | EurekAlert!
Further information:
http://www.blackwellpublishing.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>