Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why do rodents’ teeth stay sharp? What is the difference between the mouse and the kangaroo?

11.11.2004


Answers to these two questions are given by two recent studies on tooth development and evolution. Scientists at the University of Helsinki have identified the gene responsible for tooth enamel formation, which also explains the sharp incisors of rodents. The second study adds to our knowledge on evolution: the differences between teeth in various species, which have been utilised in evolution research, can be altered through one signalling molecule that regulates development. The research findings will be published this week in two leading scientific journals, Developmental Cell and Nature.



“Enamel gene” explains why rodents’ teeth stay sharp

Scientists at the University of Helsinki Institute of Biotechnology have, in collaboration with their American and Swiss colleagues, identified a novel function for a gene which codes a crucially important signalling molecule, BMP (bone morphogenetic protein). BMP initiates the development of enamel and is, thereby, vital for the formation of enamel.


The scientists have also shown that BMP, together with its specific inhibitor follistatin, explain the special characteristic of rodents’ incisors, their sharp, cutting edge, which stays sharp although the rest of the incisors are worn by gnawing. The sharp edge is caused by the inhibition of BMP signalling molecule in the inner surface of the tooth so that enamel is built only on the outer surface. Thanks to the enamel, the outer surface is harder and will not wear as fast as the inner surface, and a sharp edge is formed at the point where the two surfaces meet.

The fine-tuning of various signalling molecules is the most important mechanism regulating the shape of tissues and organs. The mouse incisor is an illustrative example of how local differences in the activities of the signalling molecules determine the generation of complex structures.

The scientists participating in the study at the University of Helsinki were Xiu-Ping Wang and Marika Suomalainen from the Research Program in Developmental Biology – one of the national Centres of Excellence in Research – and Professor Irma Thesleff, the director of the unit. The results were published in Developmental Cell on 9 November.

One gene brings back teeth of mouse ancestors from 45 million years ago

Tooth fossils are the only remains of many extinct mammals. There are several details in the teeth of different species by which scientists determine the kinship between species. The University of Helsinki evolutionary biologists have shown that several of these characteristics used in evolution research can be changed with one signalling molecule regulating individual development.

The scientists discovered that when the production of a signalling molecule ectodysplasin is increased during development, the mouse teeth develop structures that can be found, for example, in the teeth of the kangaroo. Increasing the secretion of ectodysplasin also causes the mouse to have an extra tooth in a place where the ancestral form of rodents 45 million years ago still had a tooth. If the secretion of ectodysplasin is decreased, however, the mouse’s teeth lose several structures.

The results are beneficial to evolutionary biologists in determining the kinship relations between species, and for developmental biologists when studying why closely related species, such as the chimpanzee and human, have so many structural differences.

The study was conducted by Aapo Kangas, Alistair Evans, Irma Thesleff and Jukka Jernvall from the University of Helsinki Institute of Biotechnology. The study belongs to the field of evolution and developmental biology and its results will be published in Nature on 11 November.

Satu Himanen | alfa
Further information:
http://www.helsinki.fi/university/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>