Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why do rodents’ teeth stay sharp? What is the difference between the mouse and the kangaroo?


Answers to these two questions are given by two recent studies on tooth development and evolution. Scientists at the University of Helsinki have identified the gene responsible for tooth enamel formation, which also explains the sharp incisors of rodents. The second study adds to our knowledge on evolution: the differences between teeth in various species, which have been utilised in evolution research, can be altered through one signalling molecule that regulates development. The research findings will be published this week in two leading scientific journals, Developmental Cell and Nature.

“Enamel gene” explains why rodents’ teeth stay sharp

Scientists at the University of Helsinki Institute of Biotechnology have, in collaboration with their American and Swiss colleagues, identified a novel function for a gene which codes a crucially important signalling molecule, BMP (bone morphogenetic protein). BMP initiates the development of enamel and is, thereby, vital for the formation of enamel.

The scientists have also shown that BMP, together with its specific inhibitor follistatin, explain the special characteristic of rodents’ incisors, their sharp, cutting edge, which stays sharp although the rest of the incisors are worn by gnawing. The sharp edge is caused by the inhibition of BMP signalling molecule in the inner surface of the tooth so that enamel is built only on the outer surface. Thanks to the enamel, the outer surface is harder and will not wear as fast as the inner surface, and a sharp edge is formed at the point where the two surfaces meet.

The fine-tuning of various signalling molecules is the most important mechanism regulating the shape of tissues and organs. The mouse incisor is an illustrative example of how local differences in the activities of the signalling molecules determine the generation of complex structures.

The scientists participating in the study at the University of Helsinki were Xiu-Ping Wang and Marika Suomalainen from the Research Program in Developmental Biology – one of the national Centres of Excellence in Research – and Professor Irma Thesleff, the director of the unit. The results were published in Developmental Cell on 9 November.

One gene brings back teeth of mouse ancestors from 45 million years ago

Tooth fossils are the only remains of many extinct mammals. There are several details in the teeth of different species by which scientists determine the kinship between species. The University of Helsinki evolutionary biologists have shown that several of these characteristics used in evolution research can be changed with one signalling molecule regulating individual development.

The scientists discovered that when the production of a signalling molecule ectodysplasin is increased during development, the mouse teeth develop structures that can be found, for example, in the teeth of the kangaroo. Increasing the secretion of ectodysplasin also causes the mouse to have an extra tooth in a place where the ancestral form of rodents 45 million years ago still had a tooth. If the secretion of ectodysplasin is decreased, however, the mouse’s teeth lose several structures.

The results are beneficial to evolutionary biologists in determining the kinship relations between species, and for developmental biologists when studying why closely related species, such as the chimpanzee and human, have so many structural differences.

The study was conducted by Aapo Kangas, Alistair Evans, Irma Thesleff and Jukka Jernvall from the University of Helsinki Institute of Biotechnology. The study belongs to the field of evolution and developmental biology and its results will be published in Nature on 11 November.

Satu Himanen | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>