Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual competition drives evolution of a sex-related gene

08.11.2004


In what could be termed a truly seminal discovery, researchers have shown that when females are more promiscuous, males have to work harder -- at the genetic level, that is. More specifically, they determined that a protein controlling semen viscosity evolves more rapidly in primate species with promiscuous females than in monogamous species. The finding demonstrates that sexual competition among males is evident at the molecular level, as well as at behavioral and physiological levels.



The researchers, led by Howard Hughes Medical Institute investigator Bruce Lahn at the University of Chicago, published their findings in the November 7, 2004, issue of Nature Genetics. Lahn’s group studied semenogelin, a major protein in the seminal fluid that controls the viscosity of semen immediately following ejaculation. In some species of primates, it allows semen to remain quite liquid after ejaculation, but in others, semenogelin molecules chemically crosslink with one another, increasing the viscosity of semen. In some extreme cases, semenogelin’s effects on viscosity are so strong that the semen becomes a solid plug in the vagina. According to Lahn, such plugs might serve as a sort of molecular "chastity belt" to prevent fertilization by the sperm of subsequent suitors, though they might also prevent semen backflow to increase the likelihood of fertilization.

Lahn and his colleagues compared the SEMG2 gene, which contains the blueprint for semenogelin, from a variety of primates. They began by sequencing the SEMG2 gene in humans, chimpanzees, pygmy chimpanzees, gorillas, orangutans, gibbons, macaques, colobus monkeys, and spider monkeys. These species were chosen because they represent all the major mating systems, including those in which one female copulates with one male in a fertile period (such as gorillas and gibbons); those in which females copulate highly promiscuously (such as chimpanzees and macaques); and those in which mating practices fall somewhere in between (such as orangutans where a female will copulate with the dominant male, but may also copulate with other males opportunistically).


"When we plotted data on the evolution rate of the semenogelin protein against the level of female promiscuity, we saw a clear correlation whereby species with more promiscuous females showed much higher rates of protein evolution than species with more monogamous females," said Lahn. The researchers measured protein evolution rates by counting the number of amino acid changes in the protein, then scaling it to the amount of evolutionary time taken to make those changes. "The idea is that in species with promiscuous females, there’s more selective pressure for the male to make his semen more competitive. It’s similar to the pressures of a competitive marketplace. In such a marketplace, competitors have to constantly change their products to make them better, to give them an edge over their rivals -- whereas, in a monopoly, there’s no incentive to change."

The finding constitutes the first specific evidence that different levels of sexual competition produce different genetic effects, said Lahn. It had been established previously that levels of polyandry -- the mating of one female with more than one male -- affected physiological traits. For example, more polyandrous species have larger testes capable of producing more sperm. There is a metabolic cost to such adaptation, Lahn said, and in species where there is no competition, the cost is not worth the effort. "Now, for the first time, we show such competitive effects, not only at the level of physiology, but of individual genes," said Lahn. "The genes have to adapt faster for any given male to gain an edge over his competitors."

According to Lahn, while other studies have indicated that male reproductive genes in general tend to evolve more rapidly than other genes, "this study extends those observations to a more quantitative level, showing that the rate of evolution actually correlates with how intense the sexual selection is."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>