Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual competition drives evolution of a sex-related gene

08.11.2004


In what could be termed a truly seminal discovery, researchers have shown that when females are more promiscuous, males have to work harder -- at the genetic level, that is. More specifically, they determined that a protein controlling semen viscosity evolves more rapidly in primate species with promiscuous females than in monogamous species. The finding demonstrates that sexual competition among males is evident at the molecular level, as well as at behavioral and physiological levels.



The researchers, led by Howard Hughes Medical Institute investigator Bruce Lahn at the University of Chicago, published their findings in the November 7, 2004, issue of Nature Genetics. Lahn’s group studied semenogelin, a major protein in the seminal fluid that controls the viscosity of semen immediately following ejaculation. In some species of primates, it allows semen to remain quite liquid after ejaculation, but in others, semenogelin molecules chemically crosslink with one another, increasing the viscosity of semen. In some extreme cases, semenogelin’s effects on viscosity are so strong that the semen becomes a solid plug in the vagina. According to Lahn, such plugs might serve as a sort of molecular "chastity belt" to prevent fertilization by the sperm of subsequent suitors, though they might also prevent semen backflow to increase the likelihood of fertilization.

Lahn and his colleagues compared the SEMG2 gene, which contains the blueprint for semenogelin, from a variety of primates. They began by sequencing the SEMG2 gene in humans, chimpanzees, pygmy chimpanzees, gorillas, orangutans, gibbons, macaques, colobus monkeys, and spider monkeys. These species were chosen because they represent all the major mating systems, including those in which one female copulates with one male in a fertile period (such as gorillas and gibbons); those in which females copulate highly promiscuously (such as chimpanzees and macaques); and those in which mating practices fall somewhere in between (such as orangutans where a female will copulate with the dominant male, but may also copulate with other males opportunistically).


"When we plotted data on the evolution rate of the semenogelin protein against the level of female promiscuity, we saw a clear correlation whereby species with more promiscuous females showed much higher rates of protein evolution than species with more monogamous females," said Lahn. The researchers measured protein evolution rates by counting the number of amino acid changes in the protein, then scaling it to the amount of evolutionary time taken to make those changes. "The idea is that in species with promiscuous females, there’s more selective pressure for the male to make his semen more competitive. It’s similar to the pressures of a competitive marketplace. In such a marketplace, competitors have to constantly change their products to make them better, to give them an edge over their rivals -- whereas, in a monopoly, there’s no incentive to change."

The finding constitutes the first specific evidence that different levels of sexual competition produce different genetic effects, said Lahn. It had been established previously that levels of polyandry -- the mating of one female with more than one male -- affected physiological traits. For example, more polyandrous species have larger testes capable of producing more sperm. There is a metabolic cost to such adaptation, Lahn said, and in species where there is no competition, the cost is not worth the effort. "Now, for the first time, we show such competitive effects, not only at the level of physiology, but of individual genes," said Lahn. "The genes have to adapt faster for any given male to gain an edge over his competitors."

According to Lahn, while other studies have indicated that male reproductive genes in general tend to evolve more rapidly than other genes, "this study extends those observations to a more quantitative level, showing that the rate of evolution actually correlates with how intense the sexual selection is."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>