Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discovers one mechanism for why men and women differ in immune response

08.11.2004


Decreasing testosterone boosts immunity because testosterone helps control T-lymphocytes, the attack cells of the immune system, according to Mayo Clinic-led research in laboratory animals. The findings appear in the Nov. 15 edition of the Journal of Immunology.



Collaborators include scientists from Roswell Park Cancer Institute, Buffalo, N.Y.; the Tumor Immunity and Tolerance Section of the Laboratory of Molecular Immunoregulation, National Cancer Institute; and Howard Hughes Medical Institute/Memorial Sloan-Kettering Cancer Center. "What we are showing is that testosterone seems to impede immunity," says Eugene Kwon, M.D., the Mayo Clinic urologist and immunology researcher who led the research team. "However, when testosterone is withdrawn, you get an increased host immune response indicated by the rising numbers of immune cells that are available to participate."

T-lymphocytes are cells that are vital to controlling the body’s immune response. "T cells," as they are usually called by scientists, are white blood cells that can fight against tumor cells and infection. Alternatively, T cells can help other immune cells known as "B cells" make antibodies to defend the body against certain bacterial and fungal infections, and possibly against cancer. The research findings may have broad potential applications to public health. For example, knowing that testosterone levels affect T-cell response may help:

  • explain why women are more prone than men to develop "autoimmune disease."
  • speed the development of drugs that bolster the immune system to treat such immune-deficiency diseases as AIDS.
  • improve vaccines.
  • decrease the time needed to reconstitute the immune system after bone marrow transplantation.
  • protect cancer patients who are receiving immunotherapy treatments or who are vulnerable to infection as a result of chemotherapy.

Significance of the Research


Researchers and physicians have known for years that there is a difference in immunity between men and women -- but they have not known why. The researchers discovered one possible mechanism driving the difference: The presence of testosterone slows or weakens the response of T-lymphocytes. Delving further to discover the mechanism behind this response, the research team found that without testosterone, the T-lymphocytes "turn-on" more quickly.

It also is possible that other sex hormones play a similar role because testosterone is just one of the hormones known as androgens.

"Females are typically more predisposed to the phenomenon of autoimmunity," says Dr. Kwon. "And of course, what’s interesting about this is that females don’t have significant levels of testosterone. Men, on the other hand, may have relatively blunted immune responses and have high levels of testosterone. So these results of our experiment are really very promising for unraveling this gender difference in the immune system." He emphasizes that further research is needed to validate these findings before they can be used in human patients in the clinic.

Background Biology

Dr. Kwon frequently cares for patients with prostate cancer. The current experiment grew out of his experience in the clinic. One of the more common forms of treatment for prostate cancer suppresses the patient’s testosterone levels to increase the patient’s immune attack against cancer. To test the role of testosterone on the immune system in the laboratory, the researchers removed testosterone from male mice.

"They suddenly started growing large numbers of new immune cells," Dr. Kwon says. "We also demonstrated that if you take a male mouse and treat it with chemotherapy you can prompt the mouse to recover its immune system much more quickly simply by removing androgen."

When testosterone is removed, the immune cells come back strong and aggressive, ready to attack. Says Dr. Kwon, "They become twitchy, very reactive, and in this state they can, in fact, mediate a strong immune response -- which, as physicians, is just what we want."

Collaborators and Support

In addition to Dr. Kwon, Mayo Clinic research team members include Anja C. Roden, M.D., Samuel D. Tri, Maria Mercader, Ph.D., Susan M. Kuntz, Haidong Dong, M.D., Ph.D., David J. McKean, Ph.D., Esteban Celis, M.D., and Bradley C. Leibovich, M.D. Collaborators from other institutions are: Michael T. Moser, Roswell Park Cancer Institute; Arthur A. Hurwitz, principal investigator, Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, National Cancer Institute; and James P. Allison, chairman, Immunology Program, David H. Koch Chair in Immunologic Studies, Attending Immunologist, Department of Medicine, Investigator, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center. The work was supported by a National Institutes of Health National Cancer Institute grant; a U.S. Department of Defense grant; and the Mayo Foundation.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.jimmunol.org/future/173.10.shtml

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

New discovery: Common jellyfish is actually two species

22.11.2017 | Life Sciences

Researchers discover specific tumor environment that triggers cells to metastasize

22.11.2017 | Life Sciences

A material with promising properties

22.11.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>