Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic discovers one mechanism for why men and women differ in immune response

08.11.2004


Decreasing testosterone boosts immunity because testosterone helps control T-lymphocytes, the attack cells of the immune system, according to Mayo Clinic-led research in laboratory animals. The findings appear in the Nov. 15 edition of the Journal of Immunology.



Collaborators include scientists from Roswell Park Cancer Institute, Buffalo, N.Y.; the Tumor Immunity and Tolerance Section of the Laboratory of Molecular Immunoregulation, National Cancer Institute; and Howard Hughes Medical Institute/Memorial Sloan-Kettering Cancer Center. "What we are showing is that testosterone seems to impede immunity," says Eugene Kwon, M.D., the Mayo Clinic urologist and immunology researcher who led the research team. "However, when testosterone is withdrawn, you get an increased host immune response indicated by the rising numbers of immune cells that are available to participate."

T-lymphocytes are cells that are vital to controlling the body’s immune response. "T cells," as they are usually called by scientists, are white blood cells that can fight against tumor cells and infection. Alternatively, T cells can help other immune cells known as "B cells" make antibodies to defend the body against certain bacterial and fungal infections, and possibly against cancer. The research findings may have broad potential applications to public health. For example, knowing that testosterone levels affect T-cell response may help:

  • explain why women are more prone than men to develop "autoimmune disease."
  • speed the development of drugs that bolster the immune system to treat such immune-deficiency diseases as AIDS.
  • improve vaccines.
  • decrease the time needed to reconstitute the immune system after bone marrow transplantation.
  • protect cancer patients who are receiving immunotherapy treatments or who are vulnerable to infection as a result of chemotherapy.

Significance of the Research


Researchers and physicians have known for years that there is a difference in immunity between men and women -- but they have not known why. The researchers discovered one possible mechanism driving the difference: The presence of testosterone slows or weakens the response of T-lymphocytes. Delving further to discover the mechanism behind this response, the research team found that without testosterone, the T-lymphocytes "turn-on" more quickly.

It also is possible that other sex hormones play a similar role because testosterone is just one of the hormones known as androgens.

"Females are typically more predisposed to the phenomenon of autoimmunity," says Dr. Kwon. "And of course, what’s interesting about this is that females don’t have significant levels of testosterone. Men, on the other hand, may have relatively blunted immune responses and have high levels of testosterone. So these results of our experiment are really very promising for unraveling this gender difference in the immune system." He emphasizes that further research is needed to validate these findings before they can be used in human patients in the clinic.

Background Biology

Dr. Kwon frequently cares for patients with prostate cancer. The current experiment grew out of his experience in the clinic. One of the more common forms of treatment for prostate cancer suppresses the patient’s testosterone levels to increase the patient’s immune attack against cancer. To test the role of testosterone on the immune system in the laboratory, the researchers removed testosterone from male mice.

"They suddenly started growing large numbers of new immune cells," Dr. Kwon says. "We also demonstrated that if you take a male mouse and treat it with chemotherapy you can prompt the mouse to recover its immune system much more quickly simply by removing androgen."

When testosterone is removed, the immune cells come back strong and aggressive, ready to attack. Says Dr. Kwon, "They become twitchy, very reactive, and in this state they can, in fact, mediate a strong immune response -- which, as physicians, is just what we want."

Collaborators and Support

In addition to Dr. Kwon, Mayo Clinic research team members include Anja C. Roden, M.D., Samuel D. Tri, Maria Mercader, Ph.D., Susan M. Kuntz, Haidong Dong, M.D., Ph.D., David J. McKean, Ph.D., Esteban Celis, M.D., and Bradley C. Leibovich, M.D. Collaborators from other institutions are: Michael T. Moser, Roswell Park Cancer Institute; Arthur A. Hurwitz, principal investigator, Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, National Cancer Institute; and James P. Allison, chairman, Immunology Program, David H. Koch Chair in Immunologic Studies, Attending Immunologist, Department of Medicine, Investigator, Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center. The work was supported by a National Institutes of Health National Cancer Institute grant; a U.S. Department of Defense grant; and the Mayo Foundation.

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu
http://www.jimmunol.org/future/173.10.shtml

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>