Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers define celecoxib pathways and mechanisms for tumor reduction

05.11.2004


The anti-inflammatory drug Celebrex, or celecoxib, reduces tumor mass by encouraging cell death and discouraging both cell proliferation and the sprouting of new blood vessels that feed growing tumors, according to a study reported in the November issue of Molecular Cancer Research.



The study, conducted by researchers at the Mayo Clinic College of Medicine in Scottsdale, Ariz., suggests this drug one day might be used to prevent and even treat breast tumors. Celebrex, marketed by Pfizer Inc., is a member of the general family of drugs that target the COX-2, an enzyme that plays a major role in arthritis pain and inflammation. "This COX-2 inhibitor represents a strong option for treatment of breast cancers, and a preventative agent for treatment of individuals with high risk of developing breast cancer or disease relapse," said Pinku Mukherjee, Ph.D., the senior author of the report.

The Mayo study showed that celecoxib caused reduction in mammary gland tumor mass that was associated with increased programmed cell death, or apoptosis, in the breast tissue of the mice. Celecoxib-induced cell death was associated with two molecular events involving pathways that lead to apoptosis. The COX-2 inhibitor increased expression of the Bax protein, which is known to function within the pro-apoptotic cell mechanism. Further, the introduction of celecoxib resulted in reduced activity of an anti-apoptotic protein, Akt, known to promote cell survival.


Generally, COX-2 works by regulating the production of prostaglandins in cells. In the Mayo study, celecoxib reduced levels of COX-2 protein in mammary tumor cells; the therapy was even more effective in minimizing the amounts of COX-2 dependent prostaglandin E metabolites in mammary tumor cells. "Celecoxib treatment appears to exert its antiproliferative, antiangiogenic, and pro-apoptotic effects by regulating the prostaglandin pathways," Mukherjee said. "This leads to the reduction in primary breast tumor mass." She noted that in an experiment with a limited number of mice, celecoxib appeared to completely inhibit metastasis of the breast tumor.

The study employed a mouse model system that closely resembles spontaneous breast cancer progression and metastasis in humans. "The MTag mouse model for human metastatic breast cancer is a helpful and important model in which to evaluate therapeutic strategies and to understand the mechanisms associated with therapy-induced growth inhibition," said Mukherjee. "This model allows us to proceed with preclinical studies that must precede clinical trials in order to enable us to develop efficient therapeutic strategies with targeted molecular therapies."

Contributing to this report along with Mukherjee were Mayo Clinic cancer researchers Gargi Basu, Ph.D., the lead author on the paper; as well as Sandra Gendler, Ph.D.; Latha Pathangey; M.S.,Teresa Tinder, B.S.; and Michelle LaGioia.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>