Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo researchers define celecoxib pathways and mechanisms for tumor reduction

05.11.2004


The anti-inflammatory drug Celebrex, or celecoxib, reduces tumor mass by encouraging cell death and discouraging both cell proliferation and the sprouting of new blood vessels that feed growing tumors, according to a study reported in the November issue of Molecular Cancer Research.



The study, conducted by researchers at the Mayo Clinic College of Medicine in Scottsdale, Ariz., suggests this drug one day might be used to prevent and even treat breast tumors. Celebrex, marketed by Pfizer Inc., is a member of the general family of drugs that target the COX-2, an enzyme that plays a major role in arthritis pain and inflammation. "This COX-2 inhibitor represents a strong option for treatment of breast cancers, and a preventative agent for treatment of individuals with high risk of developing breast cancer or disease relapse," said Pinku Mukherjee, Ph.D., the senior author of the report.

The Mayo study showed that celecoxib caused reduction in mammary gland tumor mass that was associated with increased programmed cell death, or apoptosis, in the breast tissue of the mice. Celecoxib-induced cell death was associated with two molecular events involving pathways that lead to apoptosis. The COX-2 inhibitor increased expression of the Bax protein, which is known to function within the pro-apoptotic cell mechanism. Further, the introduction of celecoxib resulted in reduced activity of an anti-apoptotic protein, Akt, known to promote cell survival.


Generally, COX-2 works by regulating the production of prostaglandins in cells. In the Mayo study, celecoxib reduced levels of COX-2 protein in mammary tumor cells; the therapy was even more effective in minimizing the amounts of COX-2 dependent prostaglandin E metabolites in mammary tumor cells. "Celecoxib treatment appears to exert its antiproliferative, antiangiogenic, and pro-apoptotic effects by regulating the prostaglandin pathways," Mukherjee said. "This leads to the reduction in primary breast tumor mass." She noted that in an experiment with a limited number of mice, celecoxib appeared to completely inhibit metastasis of the breast tumor.

The study employed a mouse model system that closely resembles spontaneous breast cancer progression and metastasis in humans. "The MTag mouse model for human metastatic breast cancer is a helpful and important model in which to evaluate therapeutic strategies and to understand the mechanisms associated with therapy-induced growth inhibition," said Mukherjee. "This model allows us to proceed with preclinical studies that must precede clinical trials in order to enable us to develop efficient therapeutic strategies with targeted molecular therapies."

Contributing to this report along with Mukherjee were Mayo Clinic cancer researchers Gargi Basu, Ph.D., the lead author on the paper; as well as Sandra Gendler, Ph.D.; Latha Pathangey; M.S.,Teresa Tinder, B.S.; and Michelle LaGioia.

Russell Vanderboom, Ph.D. | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>