Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein not only aids nerve development, but promotes blood vessel growth, too

02.11.2004


Discovery means angiogenesis may one day be stopped, started for therapeutic use



A protein important to nerve development serves the dual purpose of stimulating the growth of blood vessels, researchers from the University of Utah School of Medicine and Stanford University have discovered. The discovery opens the possibility that blood vessel growth (angiogenesis) one day may be induced, or stymied, for therapeutic use against heart disease, cancer, and other illnesses, according to Dean Y. Li, M.D., Ph.D., associate professor of internal medicine in the U of U School of Medicine’s Division of Cardiology. Li is corresponding author of an article that details the findings to be published next week in the Proceedings of the National Academy of Sciences online.

The study focuses on Netrin-1, part of the netrin family of proteins, one of four major classes of neural guidance "cues" that induce axons, or nerve fibers, to extend in specific directions during development. Recent evidence has indicated that the other three classes of neural guidance cues--ephrins, semaphorins, and slits--function as angiogenic regulators. But until now, netrins had not been shown to have a part in blood vessel formation.


Nerves and blood vessels often follow parallel paths of development, which suggests that common cues may induce both processes. In tissue cultures and animal models, Li and the other researchers showed that Netrin-1 "stimulates proliferation, induces migration, and promotes adhesion of endothelial cells and vascular smooth muscle cells."

"It makes sense that factors that guide nerves also guide blood vessel growth," Li said. "This work indicates that there is an expanding number of signals that regulate vessel growth or angiogenesis. Identifying these signals and their interaction are critical steps required for manipulating, blocking, or stimulating blood vessel growth for therapeutic purposes."

The researchers’ data demonstrate that Netrin-1 is a neural guidance cue with the "unique ability to attract both blood vessels as well as axons, and is capable of functioning as a vascular growth factor," they write. Understanding what factors induce blood vessel growth could have important implications for treating disease in the future. Tumors, for example, depend on blood vessels to supply critical nutrients to grow. If blood vessel growth in tumors could be stopped, it may help fight cancer.

Conversely, inducing blood vessel growth may help people with ischemic heart disease whose hearts don’t get enough blood. Although the discovery about Netrin-1 shows promise, therapeutic starting or stopping of blood vessel growth to cure human disease is at least 15 years away--if it proves viable, Li said.

Li began studying whether Netrin-1 promotes blood vessel growth after discovering a vascular receptor for another neural guidance factor. Next, he wants to look at the roles of other netrins in blood vessel development and identify the receptors required for the vascular effects of Netrins.

Along with Li, other researchers on the project included Kye Won Park, Dana Crouse, Satyajit Karnik, and Lise K. Sorensen, the U of U School of Medicine’s Program in Human Molecular Biology and Genetics; Kelly J. Murphy, U of U Department of Cardiology; Mark Lee and Calvin J. Kuo, Stanford University School of Medicine.

Dean Y. Li, M.D., Ph.D | EurekAlert!
Further information:
http://www.hmbg.utah.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>