Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein not only aids nerve development, but promotes blood vessel growth, too

02.11.2004


Discovery means angiogenesis may one day be stopped, started for therapeutic use



A protein important to nerve development serves the dual purpose of stimulating the growth of blood vessels, researchers from the University of Utah School of Medicine and Stanford University have discovered. The discovery opens the possibility that blood vessel growth (angiogenesis) one day may be induced, or stymied, for therapeutic use against heart disease, cancer, and other illnesses, according to Dean Y. Li, M.D., Ph.D., associate professor of internal medicine in the U of U School of Medicine’s Division of Cardiology. Li is corresponding author of an article that details the findings to be published next week in the Proceedings of the National Academy of Sciences online.

The study focuses on Netrin-1, part of the netrin family of proteins, one of four major classes of neural guidance "cues" that induce axons, or nerve fibers, to extend in specific directions during development. Recent evidence has indicated that the other three classes of neural guidance cues--ephrins, semaphorins, and slits--function as angiogenic regulators. But until now, netrins had not been shown to have a part in blood vessel formation.


Nerves and blood vessels often follow parallel paths of development, which suggests that common cues may induce both processes. In tissue cultures and animal models, Li and the other researchers showed that Netrin-1 "stimulates proliferation, induces migration, and promotes adhesion of endothelial cells and vascular smooth muscle cells."

"It makes sense that factors that guide nerves also guide blood vessel growth," Li said. "This work indicates that there is an expanding number of signals that regulate vessel growth or angiogenesis. Identifying these signals and their interaction are critical steps required for manipulating, blocking, or stimulating blood vessel growth for therapeutic purposes."

The researchers’ data demonstrate that Netrin-1 is a neural guidance cue with the "unique ability to attract both blood vessels as well as axons, and is capable of functioning as a vascular growth factor," they write. Understanding what factors induce blood vessel growth could have important implications for treating disease in the future. Tumors, for example, depend on blood vessels to supply critical nutrients to grow. If blood vessel growth in tumors could be stopped, it may help fight cancer.

Conversely, inducing blood vessel growth may help people with ischemic heart disease whose hearts don’t get enough blood. Although the discovery about Netrin-1 shows promise, therapeutic starting or stopping of blood vessel growth to cure human disease is at least 15 years away--if it proves viable, Li said.

Li began studying whether Netrin-1 promotes blood vessel growth after discovering a vascular receptor for another neural guidance factor. Next, he wants to look at the roles of other netrins in blood vessel development and identify the receptors required for the vascular effects of Netrins.

Along with Li, other researchers on the project included Kye Won Park, Dana Crouse, Satyajit Karnik, and Lise K. Sorensen, the U of U School of Medicine’s Program in Human Molecular Biology and Genetics; Kelly J. Murphy, U of U Department of Cardiology; Mark Lee and Calvin J. Kuo, Stanford University School of Medicine.

Dean Y. Li, M.D., Ph.D | EurekAlert!
Further information:
http://www.hmbg.utah.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>