Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein not only aids nerve development, but promotes blood vessel growth, too

02.11.2004


Discovery means angiogenesis may one day be stopped, started for therapeutic use



A protein important to nerve development serves the dual purpose of stimulating the growth of blood vessels, researchers from the University of Utah School of Medicine and Stanford University have discovered. The discovery opens the possibility that blood vessel growth (angiogenesis) one day may be induced, or stymied, for therapeutic use against heart disease, cancer, and other illnesses, according to Dean Y. Li, M.D., Ph.D., associate professor of internal medicine in the U of U School of Medicine’s Division of Cardiology. Li is corresponding author of an article that details the findings to be published next week in the Proceedings of the National Academy of Sciences online.

The study focuses on Netrin-1, part of the netrin family of proteins, one of four major classes of neural guidance "cues" that induce axons, or nerve fibers, to extend in specific directions during development. Recent evidence has indicated that the other three classes of neural guidance cues--ephrins, semaphorins, and slits--function as angiogenic regulators. But until now, netrins had not been shown to have a part in blood vessel formation.


Nerves and blood vessels often follow parallel paths of development, which suggests that common cues may induce both processes. In tissue cultures and animal models, Li and the other researchers showed that Netrin-1 "stimulates proliferation, induces migration, and promotes adhesion of endothelial cells and vascular smooth muscle cells."

"It makes sense that factors that guide nerves also guide blood vessel growth," Li said. "This work indicates that there is an expanding number of signals that regulate vessel growth or angiogenesis. Identifying these signals and their interaction are critical steps required for manipulating, blocking, or stimulating blood vessel growth for therapeutic purposes."

The researchers’ data demonstrate that Netrin-1 is a neural guidance cue with the "unique ability to attract both blood vessels as well as axons, and is capable of functioning as a vascular growth factor," they write. Understanding what factors induce blood vessel growth could have important implications for treating disease in the future. Tumors, for example, depend on blood vessels to supply critical nutrients to grow. If blood vessel growth in tumors could be stopped, it may help fight cancer.

Conversely, inducing blood vessel growth may help people with ischemic heart disease whose hearts don’t get enough blood. Although the discovery about Netrin-1 shows promise, therapeutic starting or stopping of blood vessel growth to cure human disease is at least 15 years away--if it proves viable, Li said.

Li began studying whether Netrin-1 promotes blood vessel growth after discovering a vascular receptor for another neural guidance factor. Next, he wants to look at the roles of other netrins in blood vessel development and identify the receptors required for the vascular effects of Netrins.

Along with Li, other researchers on the project included Kye Won Park, Dana Crouse, Satyajit Karnik, and Lise K. Sorensen, the U of U School of Medicine’s Program in Human Molecular Biology and Genetics; Kelly J. Murphy, U of U Department of Cardiology; Mark Lee and Calvin J. Kuo, Stanford University School of Medicine.

Dean Y. Li, M.D., Ph.D | EurekAlert!
Further information:
http://www.hmbg.utah.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>