Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein not only aids nerve development, but promotes blood vessel growth, too

02.11.2004


Discovery means angiogenesis may one day be stopped, started for therapeutic use



A protein important to nerve development serves the dual purpose of stimulating the growth of blood vessels, researchers from the University of Utah School of Medicine and Stanford University have discovered. The discovery opens the possibility that blood vessel growth (angiogenesis) one day may be induced, or stymied, for therapeutic use against heart disease, cancer, and other illnesses, according to Dean Y. Li, M.D., Ph.D., associate professor of internal medicine in the U of U School of Medicine’s Division of Cardiology. Li is corresponding author of an article that details the findings to be published next week in the Proceedings of the National Academy of Sciences online.

The study focuses on Netrin-1, part of the netrin family of proteins, one of four major classes of neural guidance "cues" that induce axons, or nerve fibers, to extend in specific directions during development. Recent evidence has indicated that the other three classes of neural guidance cues--ephrins, semaphorins, and slits--function as angiogenic regulators. But until now, netrins had not been shown to have a part in blood vessel formation.


Nerves and blood vessels often follow parallel paths of development, which suggests that common cues may induce both processes. In tissue cultures and animal models, Li and the other researchers showed that Netrin-1 "stimulates proliferation, induces migration, and promotes adhesion of endothelial cells and vascular smooth muscle cells."

"It makes sense that factors that guide nerves also guide blood vessel growth," Li said. "This work indicates that there is an expanding number of signals that regulate vessel growth or angiogenesis. Identifying these signals and their interaction are critical steps required for manipulating, blocking, or stimulating blood vessel growth for therapeutic purposes."

The researchers’ data demonstrate that Netrin-1 is a neural guidance cue with the "unique ability to attract both blood vessels as well as axons, and is capable of functioning as a vascular growth factor," they write. Understanding what factors induce blood vessel growth could have important implications for treating disease in the future. Tumors, for example, depend on blood vessels to supply critical nutrients to grow. If blood vessel growth in tumors could be stopped, it may help fight cancer.

Conversely, inducing blood vessel growth may help people with ischemic heart disease whose hearts don’t get enough blood. Although the discovery about Netrin-1 shows promise, therapeutic starting or stopping of blood vessel growth to cure human disease is at least 15 years away--if it proves viable, Li said.

Li began studying whether Netrin-1 promotes blood vessel growth after discovering a vascular receptor for another neural guidance factor. Next, he wants to look at the roles of other netrins in blood vessel development and identify the receptors required for the vascular effects of Netrins.

Along with Li, other researchers on the project included Kye Won Park, Dana Crouse, Satyajit Karnik, and Lise K. Sorensen, the U of U School of Medicine’s Program in Human Molecular Biology and Genetics; Kelly J. Murphy, U of U Department of Cardiology; Mark Lee and Calvin J. Kuo, Stanford University School of Medicine.

Dean Y. Li, M.D., Ph.D | EurekAlert!
Further information:
http://www.hmbg.utah.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>