Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trojan-Horse Therapy Blocks Buildup of Alzheimer’s Plaques

29.10.2004


A potential new therapeutic approach to Alzheimer’s disease protects brain cells in culture by drastically reducing the neurotoxic amyloid protein aggregates that are critical to the development of the disease. The treatment involves dispatching a small molecule into the cell to enlist the aid of a larger “chaperone” protein to block the accumulation of the brain-clogging protein.



The new “Trojan horse” technique overcomes a major challenge in drug design - namely, the limited ability of molecules small enough to enter a cell to interfere with interactions between much larger proteins. The researchers said it might also be possible to use this new approach to sabotage proteins central to pathogenic organisms, such as human immunodeficiency virus (HIV).

Led by Howard Hughes Medical Institute investigator Gerald R. Crabtree, the researchers reported their findings in the October 29, 2004, issue of the journal Science. First author Jason Gestwicki and senior author Isabella Graef are both members of Crabtree’s laboratory at Stanford University School of Medicine.


The plaques that clog the brains of people with Alzheimer’s disease develop through the buildup of amyloid protein chains from individual units called Aß peptide. “There have been many attempts by pharmaceutical companies to develop Aß peptide inhibitors — mainly by screening for small molecules that would bind to those aggregates and hoping that they would prevent further aggregation,” said Crabtree. “But instead, what happens in virtually all cases is that those molecules just fit right into the aggregates and don’t prevent aggregation at workable concentrations.”

The issue, he explained, applies not just to amyloid aggregation, but also to protein interactions in general. “The insurmountable problem has been that protein interactions represent the binding of two large, perfectly matched surfaces,” said Crabtree. “And small molecule drugs are only a tiny fraction of the size of those surfaces. So, even if such small molecules are constructed to bind selectively at a site between two such proteins, they either just squirt out, or the plastic surfaces of the proteins just bind around them.”

In early experiments, Roger Briesewitz, a former member of the Crabtree laboratory and HHMI fellow, who is now on the faculty at Ohio State University, had been engineering the Trojan horse approach to interfere with protein-protein interactions by designing small molecules with two binding sites. One site would bind to the protein whose interaction was to be blocked. And the other site would selectively bind to a much larger protein called a chaperone. Chaperone proteins are ubiquitous in cells and serve as “helper” molecules that guide proteins to their proper functional location in the cell.

Chaperone molecules are so plentiful in the cell that recruiting a fraction of them in such a treatment approach would not compromise their normal function, noted Crabtree.

It was Graef’s insight, said Crabtree, that the Trojan horse technique might be ideal to prevent the formation of toxic amyloid aggregates to prevent Alzheimer’s disease. “Isabella suggested that we try Aß peptide as a target because it’s small enough that a bulky chaperone protein could possibly interfere with amyloid formation from the Aß peptide,” said Crabtree.

To apply the Trojan horse approach, Gestwicki constructed a series of small “linker” molecules that would attach to a molecule called FKBP, a family of chaperone proteins found naturally at high concentrations in the cell. Gestwicki attached the other end of the linker to a molecule called Congo red, which is known to selectively bind to Aß peptide.

In test-tube studies, they found that their Trojan horse molecules did, indeed, block the growth of amyloid aggregates from their Aß peptide components. In particular, they found that the molecules inhibited growth of the shorter amyloid chains, which are believed to be more toxic to neurons. They also found that by varying the linker molecules, they could optimize the pharmaceutical properties of the Trojan horse assemblage - for example, its ability to penetrate the cell membrane to enter the cell.

In studies of the molecules’ effects on amyloid growth in cultures of neurons, the researchers confirmed that the Trojan horse molecules substantially reduced the toxicity of the amyloid by inhibiting growth of the shorter, more toxic chains of the amyloid plaque. With a second round of optimization, the scientists achieved even better results “In fact,” said Crabtree, “we achieved much better protective effects than have been achieved by pharmaceutical companies and by other academic groups using other approaches to inhibiting Aß aggregation.”

The next step will be to test the Trojan horse molecules on mouse models of Alzheimer’s disease, to determine whether the molecules have a clinical effect on progression of the disease. Crabtree said that the Trojan horse approach might complement other treatments being tested for Alzheimer’s disease. These include anti-inflammatory treatments to prevent neuronal cell death from toxic aggregates, inhibitors of aberrant molecular signaling pathways in Alzheimer’s, and vaccines to trigger antibodies to rid the brain of plaque.

Crabtree also speculated that his group’s approach could be applied widely to other clinically important protein-protein interactions, such as interfering with protein enzymes critical to replication of HIV. “HIV proteins are difficult drug targets because they can mutate rapidly to render small-molecule inhibitors inefficient,” he said. “Such drugs typically bind only to a few amino acids in the protein, which the virus can easily alter by mutation. But in our approach, we could distribute the binding over a large protein-protein interaction surface, which would be far more difficult for the virus to block by mutations affecting single amino acids.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>