Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular mechanism sheds light on neurodegenerative diseases

22.10.2004


Alzheimer’s. Parkinson’s. Lou Gehrig’s. Huntington’s. These neurodegenerative diseases exhibit loss of nerve function in different ways, from memory lapses to uncontrollable muscular movements, but it is now believed that these diseases share many common molecular mechanisms.



A team of Northwestern University scientists, led by Richard I. Morimoto, John Evans Professor of Biology, has made a key discovery toward understanding one of these mechanisms. In studying toxic proteins involved in Huntington’s disease, they discovered that the disease-causing protein severely interferes with the working of the proteasome, the cellular machine responsible for eliminating damaged proteins within the cell.

The findings, which could lead to an understanding of how to prevent neurodegenerative diseases and to the development of effective drugs, will be published Oct. 27 in The EMBO Journal, a publication of the European Molecular Biology Organization.


The proteasome is responsible for cell homeostasis. In healthy cells, proteins perform their function and then, with the help of the proteasome, disappear. If idle and damaged proteins remain, their presence can affect cell behavior.

Misfolded and damaged proteins are common to all human neurodegenerative diseases. They clump together to form toxic aggregates that destroy cell function and cause disease. Morimoto’s team is the first to demonstrate in living human cells and in real time that the toxic protein aggregates, in this case caused by mutant Huntingtin, bind to the proteasome machine irreversibly and prevent the complete degradation of the proteins. This evidence could help explain the disease process.

"We believe this suggests why Huntington’s disease is so destructive," said Morimoto. "Once bound, the toxic proteins do not release the proteasome. This interference with the normal clearance of proteins has a cumulative and amplifying negative effect. The proteins that are normally degraded build up."

The researchers’ data also show that the toxic proteins and proteasome are bound together in a close and stable fashion, indicating that the proteins are trapped within the proteasome. This could explain the negative consequences on the health of the cell in which disease builds over decades before symptoms result.

In addition to Morimoto, other authors on the EMBO paper are Carina I. Holmberg, a post-doctoral fellow and the paper’s lead author; Kwame N. Mensah, a graduate student; and Andreas Matouschek, associate professor of biochemistry, molecular biology and cell biology, from Northwestern University; and Kristine E. Staniszweski, a former graduate student at Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>