Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular mechanism sheds light on neurodegenerative diseases


Alzheimer’s. Parkinson’s. Lou Gehrig’s. Huntington’s. These neurodegenerative diseases exhibit loss of nerve function in different ways, from memory lapses to uncontrollable muscular movements, but it is now believed that these diseases share many common molecular mechanisms.

A team of Northwestern University scientists, led by Richard I. Morimoto, John Evans Professor of Biology, has made a key discovery toward understanding one of these mechanisms. In studying toxic proteins involved in Huntington’s disease, they discovered that the disease-causing protein severely interferes with the working of the proteasome, the cellular machine responsible for eliminating damaged proteins within the cell.

The findings, which could lead to an understanding of how to prevent neurodegenerative diseases and to the development of effective drugs, will be published Oct. 27 in The EMBO Journal, a publication of the European Molecular Biology Organization.

The proteasome is responsible for cell homeostasis. In healthy cells, proteins perform their function and then, with the help of the proteasome, disappear. If idle and damaged proteins remain, their presence can affect cell behavior.

Misfolded and damaged proteins are common to all human neurodegenerative diseases. They clump together to form toxic aggregates that destroy cell function and cause disease. Morimoto’s team is the first to demonstrate in living human cells and in real time that the toxic protein aggregates, in this case caused by mutant Huntingtin, bind to the proteasome machine irreversibly and prevent the complete degradation of the proteins. This evidence could help explain the disease process.

"We believe this suggests why Huntington’s disease is so destructive," said Morimoto. "Once bound, the toxic proteins do not release the proteasome. This interference with the normal clearance of proteins has a cumulative and amplifying negative effect. The proteins that are normally degraded build up."

The researchers’ data also show that the toxic proteins and proteasome are bound together in a close and stable fashion, indicating that the proteins are trapped within the proteasome. This could explain the negative consequences on the health of the cell in which disease builds over decades before symptoms result.

In addition to Morimoto, other authors on the EMBO paper are Carina I. Holmberg, a post-doctoral fellow and the paper’s lead author; Kwame N. Mensah, a graduate student; and Andreas Matouschek, associate professor of biochemistry, molecular biology and cell biology, from Northwestern University; and Kristine E. Staniszweski, a former graduate student at Northwestern.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>