Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into progression of colorectal cancer

20.10.2004


Researchers have uncovered a specific signaling mechanism that contributes to the development of colorectal cancer, one of the most common deadly human cancers. The discovery furthers the understanding of mechanisms that contribute to disease progression and provides new avenues for development of therapies for colorectal cancer.



According to study author, Dr. Marcus F. Neurath from the University of Mainz in Germany, "Several lines of evidence support an important role of TGF-b in the development of colorectal cancer. For instance, mutations of the TGF-b receptor II are frequently observed in patients with colon cancer suggesting a potential role for TGF-b in preventing colon carcinogenesis." However, the molecular mechanisms that control colon cancer are poorly understood. Dr. Neurath and colleagues used a mouse model of colon cancer to show that carcinogenesis in the colon is highly dependent on TGF-b production in tumor infiltrating T lymphocytes. Specifically, a form of the cytokine interleukin (IL)-6 was shown to play a key role and inhibition of TGF-b-dependent IL-6 trans-signaling prevented tumor progression.

The researchers conclude that development and progression of colorectal cancer is dependent on TGF-b production in tumor infiltrating T lymphocytes via a TGF-b –dependent mechanism controlling IL-6 trans-signaling. "Taken together, our data provide novel insights into TGF-b signaling in colorectal cancer and suggest novel therapeutic approaches for colorectal cancer based on inhibition of TGF-b-dependent IL-6 trans-signaling," explains Dr. Neurath.


Christoph Becker, Massimo C. Fantini, Christoph Schramm, Hans A. Lehr, Stefan Wirtz, Alexei Nikolaev, Jürgen Burg, Susanne Strand, Ralf Kiesslich, Samuel Huber, Hiroaki Ito, Norihiro Nishimoto, Kazuyuki Yoshizaki, Tadamitsu Kishimoto, Peter R. Galle, Manfred Blessing, Stefan Rose-John, and Markus F. Neurath: "TGF-Beta Suppresses Tumor Progression in Colon Cancer by Inhibition of IL-6 trans-Signaling"

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>