Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Component of volcanic gas may have played a significant role in the origins of life on Earth


Scientists at The Scripps Research Institute and the Salk Institute for Biological Studies are reporting a possible answer to a longstanding question in research on the origins of life on Earth--how did the first amino acids form the first peptides?

Peptides and proteins are strings of amino acid building blocks, and they are one of the most important classes of biological molecules found in living things today. Fifty years of chemical research on the origins of life has shown that amino acids could have formed spontaneously on the early Earth environment or could have been introduced onto the early Earth from meteorites.

"There are lots of ways to make amino acids," says Professor M. Reza Ghadiri, Ph.D., who is a member of The Skaggs Institute for Chemical Biology at Scripps Research. "But the question is, how do you couple them together?"

Ghadiri and Luke Leman, who is a member of the Kellogg School of Science and Technology at Scripps Research, worked out one possible solution with Leslie Orgel of the Salk Institute. In the latest issue of the journal Science, Leman, Ghadiri, and Orgel suggest that the missing link is a chemical component of volcanic gas known as carbonyl sulfide.

Carbonyl sulfide is present in volcanic gasses and deep sea vent emissions today, and since these geological phenomena were prominent features on the early Earth, it is reasonable to assume that the gas was present.

In their report, the scientists demonstrate that the gas can bring about a vigorous chemical reaction that forms peptides under mild aqueous conditions. Within a few minutes of introducing the gas to a reaction vessel containing amino acids, they observed high yields of di-, tri-, and tetra-peptides. They carried out the reaction in the presence of air, without air, and with and without other ingredients like metal ions, and they found peptides formed readily under all these conditions. "It’s really efficient, actually," says Ghadiri. "This addresses a very important question that we did not have a real good answer for."

Life--What We Know, and What We Don’t

The question of how life originated is one of the most interesting gaps in our knowledge--interesting perhaps because we know approximately when it occurred, but we do not know how it occurred.

The earliest fossils scientists have found are stromatolites--large clumps of cyanobacteria that grew in abundance in the ancient world over 3.5 billion years ago in what is now western Australia. These most likely evolved from some simpler life forms because, like all modern life, cyanobacteria are highly sophisticated living organisms--with cell walls, complex metabolism, and DNA genes. The question of the origins of life is: what came before the stromatolites?

Research on the origins of life has suggested the notion of an ancient RNA world--one in which RNA genes stored genetic information (something done by DNA today), carried out the chemistry necessary for life, and formed the essential physical structures of life (something done primarily by proteins today).

But how did that RNA world come about?

"Anybody who thinks they know the solution to this problem [of the origin of life] is deluded," says Orgel. "But," he adds, "anybody who thinks this is an insoluble problem is also deluded."

One possible approach to the problem of life’s origins is to ask the question scientifically rather than historically-- how can life emerge rather than how did life emerge. In order to address this, scientists try to determine experimentally what is chemically feasible and what could have occurred on the prebiotic earth.

One possibility, which was suggested in the 1920s by the Russian scientist A.I. Oparin, is that life emerged in its most primitive forms from minerals, metals, and the elements carbon, hydrogen, oxygen, and nitrogen, which were combined into amino acids, nucleotides, and the other the building blocks of life under the violent energy of lightning, solar radiation, comet impacts, and volcanic events that were present.

In 1953, this theory was given a boost when a paper was published in Science by Stanley L. Miller, who is Professor Emeritus at the University of California, San Diego. In the paper, Miller described an experiment he devised with Harold C. Urey--now called the Miller and Urey experiment--that gave experimental underpinnings to Oparin’s ideas.

In the experiment, Miller boiled H2O, CH4,H2, and NH3 gases in a glass apparatus containing a pair of tungsten electrodes. He subjected the chemicals to an electric discharge, intended to simulate conditions on the early Earth, and he collected and analyzed the molecules that formed--which included the amino acids alanine, glycine, and a few others. In the years since, several other investigators have expanded on the Miller–Urey experiment to demonstrate the formation and chemistry of many of the common biological amino acids, sugars, and nucleotides. Orgel, who is a long-time investigator in the field, has done pioneering research on the prebiotic chemistry of nucleotides.

This latest study is an advance because previous attempts to demonstrate the formation of peptides on early Earth depended on reaction schemes that were less plausible or were not as efficient. Next, the team plans to examine carbonyl sulfide’s reactive properties further and see if the gas can bring about other chemical reactions that are relevant to prebiotic chemistry.

Jason Bardi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>